【题目】对于项数为
(
)的有穷正整数数列
,记
(
),即
为
中的最大值,称数列
为数列
的“创新数列”.比如
的“创新数列”为
.
(1)若数列
的“创新数列”
为1,2,3,4,4,写出所有可能的数列
;
(2)设数列
为数列
的“创新数列”,满足
(
),求证:
(
);
(3)设数列
为数列
的“创新数列”,数列
中的项互不相等且所有项的和等于所有项的积,求出所有的数列
.
【答案】(1)见解析;(2)见解析;(3)![]()
【解析】试题分析:(1)创新数列为1,2,3,4,4的所有数列
,可知其首项是1,第二项是2,第三项是3,第四项是4,第五项是1或2或3或4,可写出
;(2)由题意易得
,
,从而可得
,整理即证得结论;(3)验证当
时,不满足题意,当
时,根据
而
得
,同理
,
,而当
时不满足题意.
试题解析:(1)所有可能的数列
为
;
;
;
(2)由题意知数列
中
. 又
,所以
,所以
,即
(
)
(3)当
时,由
得
,又
所以
,不满足题意;当
时,由题意知数列
中
,又![]()
当
时此时
,
而
,所以等式成立
;
当
时此时
,
而
,所以等式成立
;
当
,
得
,此时数列
为
.
当
时,
,而
,所以不存在满足题意的数列
.综上数列
依次为
.
科目:高中数学 来源: 题型:
【题目】济南新旧动能转换先行区,承载着济南从“大明湖时代”迈向“黄河时代”的梦想,肩负着山东省新旧动能转换先行先试的重任,是全国新旧动能转换的先行区.先行区将以“结构优化质量提升”为目标,通过开放平台汇聚创新要素,坚持绿色循环保障持续发展,建设现代绿色智慧新城.2019年某智能机器人制造企业有意落户先行区,对市场进行了可行性分析,如果全年固定成本共需2000(万元),每年生产机器人
(百个),需另投人成本
(万元),且
,由市场调研知,每个机器人售价6万元,且全年生产的机器人当年能全部销售完.
(1)求年利润
(万元)关于年产量
(百个)的函数关系式;(利润=销售额-成本)
(2)该企业决定:当企业年最大利润超过2000(万元)时,才选择落户新旧动能转换先行区.请问该企业能否落户先行区,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面六个句子中,错误的题号是________.
①周期函数必有最小正周期;
②若
则
,
至少有一个为
;
③
为第三象限角,则
;
④若向量
与
的夹角为锐角,则
;
⑤存在
,
,使
成立;
⑥在
中,O为
内一点,且
,则O为
的重心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
:
满足:
.记
的前
项和为
,并规定
.定义集合
,
,
.
(Ⅰ)对数列
:
,
,
,
,
,求集合
;
(Ⅱ)若集合
,
,证明:
;
(Ⅲ)给定正整数
.对所有满足
的数列
,求集合
的元素个数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列
的前n项和为
,记
,
,…,
中奇数的个数为
.
(Ⅰ)若
= n,请写出数列
的前5项;
(Ⅱ)求证:"
为奇数,
(i = 2,3,4,...)为偶数”是“数列
是单调递增数列”的充分不必要条件;
(Ⅲ)若
,i=1, 2, 3,…,求数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆
的方程为
,圆
的方程为
,动圆
与圆
内切且与圆
外切.
(1)求动圆圆心
的轨迹
的方程;
(2)已知
与
为平面内的两个定点,过
点的直线
与轨迹
交于
,
两点,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是
![]()
A. 棱柱的侧面都是平行四边形
B. 所有面都是三角形的多面体一定是三棱锥
C. 用一个平面去截正方体,截面图形可能是五边形
D. 将直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”.该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的
列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“是否赞同限行与是否拥有私家车”有关;
(2)为了了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少抽到1名“没有私家车”人员的概率.
附:
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间
(单位:天)的函数,且日销售量近似满足
,价格近似满足
。
(1)写出该商品的日销售额
(单位:元)与时间
(
)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量
商品价格);
(2)求该种商品的日销售额
的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com