【题目】已知圆
,直线 ![]()
.
(1)求证:对任意的
,直线
与圆
恒有两个交点;
(2)求直线
被圆
截得的线段的最短长度,及此时直线
的方程.
科目:高中数学 来源: 题型:
【题目】求适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是
,
,椭圆上一点
到两焦点的距离之和为
;
(2)焦点在坐标轴上,且经过
和
两点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知结论:“在三边长都相等的△ABC中,若D是BC的中点,G是△ABC外接圆的圆心,则
”.若把该结论推广到空间,则有结论:“在六条棱长都相等的四面体ABCD中,若M是△BCD的三边中线的交点,O为四面体ABCD外接球的球心,则
= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
.![]()
(1)求直线
所过定点
的坐标;
(2)求直线
被圆
所截得的弦长最短时
的值及最短弦长.
(3)已知点
,在直线
上(
为圆心),存在定点
(异于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标及该常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:mx﹣y=1,若直线l与直线x﹣(m﹣1)y=2垂直,则m的值为 , 动直线l:mx﹣y=1被圆C:x2﹣2x+y2﹣8=0截得的最短弦长为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=x2 , 点P(0,2),A、B是抛物线上两个动点,点P到直线AB的距离为1.
(1)若直线AB的倾斜角为
,求直线AB的方程;
(2)求|AB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,侧面
底面
,侧棱
,底面
为直角梯形,其中
为
中点.![]()
(1)求证:
平面
;
(2)求异面直线
与
所成角的余弦值;
(3)线段
上是否存在
,使得它到平面
的距离为
?若存在,求出
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合计 | |
男大学生 | 610 | ||
女大学生 | 90 | ||
合计 | 800 |
(1)根据题意完成表格;
(2)是否有95%的把握认为愿意做志愿者工作与性别有关? 参考公式及数据:
,其中n=a+b+c+d.
P(K2≥K0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
K0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com