【题目】定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的一个上界.已知函数
,
.
(1)若函数
为奇函数,求实数
的值;
(2)在(1)的条件下,求函数
在区间
上的所有上界构成的集合;
(3)若函数
在
上是以3为上界的有界函数,求实数
的取值范围.
【答案】(1)
;(2)上界构成集合为
;(3)实数
的取值范围为
.
【解析】试题分析:(1)
,即
,得
;(2)函数
在区间
上单调递增,所以值域为
,所以所有上界构成集合为
;(3)
在
上恒成立,分离参数得
在
上恒成立,所以
的取值范围为
.
试题解析:
(1)因为函数
为奇函数,
所以
,即
,
即
,得
,而当
时不合题意,故
.
(2)由(1)得:
,
易知,函数
在区间
上单调递增,
所以函数
在区间
上单调递增,
所以函数
在区间
上的值域为
,
所以
,故函数
在区间
上的所有上界构成集合为
.
(3)由题意知,
在
上恒成立.
,
.
∴
在
上恒成立.
∴![]()
设
,
,
,由
得
,
设
,
,
,
所以
在
上递减,
在
上递增,
在
上的最大值为
,
在
上的最小值为
.
所以实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】正方形
的棱长为1,点
分别是棱
的中点.
![]()
(Ⅰ)求二面角
的余弦值;
(Ⅱ)以
为底面作正三棱柱,若此三棱柱另一底面三个顶点也都在该正方体的表面上,求这个正三棱柱的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品企业一个月内被消费者投诉的次数用
表示.据统计,随机变量
的概率分布如下表所示.
| 0 | 1 | 2 | 3 |
| 0.1 | 0.3 |
|
|
(1)求
的值和
的数学期望;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂计划出售一种产品,经销人员并不是根据生产成本来确定这种产品的价格,而是通过对经营产品的零售商对于不同的价格情况下他们会进多少货进行调查,通过调查确定了关系式P=-750x+15000,其中P为零售商进货的数量(单位:件),x为零售商支付的每件产品价格(单位:元).现估计生产这种产品每件的材料和劳动生产费用为4元,并且工厂生产这种产品的总固定成本为7000元(固定成本是除材料和劳动费用以外的其他费用),为获得最大利润,工厂应对零售商每件收取多少元?并求此时的最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
为奇函数,且x=-1处取得极大 值2.
(1)求f(x)的解析式;
(2)过点A(1,t)
可作函数f(x)图像的三条切线,求实数t的取值范围;
(3)若
对于任意的
恒成立,求实数m取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1. ![]()
(1)证明:AC1⊥平面A1BC;
(2)求二面角B﹣A1C﹣B1的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣
,g(x)=2ln(x+1)+e﹣x .
(1)x∈(﹣1,+∞)时,证明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的长轴长为4,焦距为
.
(Ⅰ)求椭圆C的方程;
![]()
(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作x轴的垂线交C于另一点Q,延长线QM交C于点B.
(i)设直线PM、QM的斜率分别为k、
,证明
为定值.
(ii)求直线AB的斜率的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com