【题目】已知函数
,(
)是偶函数.
(1)求
的值;
(2)设函数
,其中
.若函数
与
的图象有且只有一个交点,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且![]()
(1)求证:不论
为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD ?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,圆
.
(Ⅰ)若直线
过点
且到圆心
的距离为1,求直线
的方程;
(Ⅱ)设过点
的直线
与圆
交于
两点(
的斜率为正),当
时,求以线段
为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为
个,零件的实际出厂单价为
元,写出函数
的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元? (工厂售出一个零件的利润=实际出厂单价-单件成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2
,E,F分别是AD,PC的中点.![]()
(1)证明:PC⊥平面BEF;
(2)求平面BEF与平面BAP所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为常函数)是奇函数.
(1)判断函数
在
上的单调性,并用定义法证明你的结论;
(2)若对于区间
上的任意
值,使得
不等式恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图动直线l:y=b与抛物线y2=4x交于点A,与椭圆
=1交于抛物线右侧的点B,F为抛物线的焦点,则|AF|+|BF|+|AB|的最大值为( )![]()
A.![]()
B.![]()
C.2
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com