精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,=(2cos2,x,1),=(1,sin2x+a),(x∈R,a为实常数),设函数f(x)=·

(Ⅰ)求f(x)的最小正周期;

(Ⅱ)当x∈[0,]时,f(x)的最大值为2,求a的值,并指出此时f(x)的单调区间.

解:(Ⅰ)=2cos2x+sin2x+a=cos2x+sin2x+a+1

∴f(x)=2sin(2x+)+a+1.

其最小正周期为π.

(Ⅱ)当2x+[0,]时,

f(x)取最大值3+a,由3+a=2,得a=-1.

此时,递增区间是[0,],递减区间是[].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,点A(2,1),点P在区域
y≤x
x+y≥2
y>3x-6
内运动,则
OA
OP
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,
设函数f(x)=
OM
ON

(Ⅰ)求函数y=f(x)的表达式和对称轴方程;
(Ⅱ)若角C为△ABC的三个内角中的最大角,且y=f(C)的最小值为0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,点M(3,2),若N(x,y)满足不等式组
x≥1
y≥0
x+y≤4
,则
OM
ON
 的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,A,B两点的坐标均满足不等式组
x-3y+1≤0
x+y-3≤0
x-1≥0
,则tan∠AOB的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,设函数f(x)=
OM
ON

(1)求函数y=f(x)的表达式;
(2)若角C∈[
π
3
,π)
且y=f(C)的最小值为0,求a的值;
(3)在(2)的条件下,试画出y=f(x)(x∈[0,π])的简图.

查看答案和解析>>

同步练习册答案