【题目】已知椭圆
过点
,且离心
.
(1)求椭圆
的方程;
(2)设
,
是椭圆
上异于点
的任意两点,直线
,
,
的斜率分别为
,
,
,且
,试问当
时,直线
是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
的参数方程为
(
为参数),在以原点
为极点,
轴的非负半轴为极轴建立的极坐标系中,直线
的极坐标方程为
.
(1)求圆
的普通方程和直线
的直角坐标方程;
(2)设直线
与
轴,
轴分别交于
,
两点,点
是圆
上任一点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
两地相距
,某船从
地逆水到
地,水速为
,船在静水中的速度为
.若船每小时的燃料费与其在静水中速度的平方成正比,当
,每小时的燃料费为
元,为了使全程燃料费最省,船的实际速度应为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,右焦点为
,以原点
为圆心,椭圆
的短半轴长为半径的圆与直线
相切.
![]()
(1)求椭圆
的方程;
(2)如图,过定点
的直线
交椭圆
于
两点,连接
并延长交
于
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com