【题目】现有下面四个命题:①底面是正多边形,其余各面都是等腰三角形的棱锥是正棱锥.②底面是正三角形,相邻两侧面所成二面角都相等的三棱锥是正三棱锥.③有两个面互相平行,其余四个面都是全等的等腰梯形的六面体是正四棱台.④有两个面互相平行,其余各个面是平行四边形的多面体是棱柱.其中,正确的命题的个数是( )
A. 3 B. 2 C. 1 D. 0
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左右焦点分别为的
、
,离心率为
;过抛物线
焦点
的直线交抛物线于
、
两点,当
时,
点在
轴上的射影为
。连结
并延长分别交
于
、
两点,连接
;
与
的面积分别记为
,
,设
.
(Ⅰ)求椭圆
和抛物线
的方程;
(Ⅱ)求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称 | A | B | C | D | E |
销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
利润额y(百万元) | 2 | 3 | 3 | 4 | 5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
![]()
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,任取
,记函数
在区间
上的最大值为
最小值为
记
. 则关于函数
有如下结论:
①函数
为偶函数;
②函数
的值域为
;
③函数
的周期为2;
④函数
的单调增区间为
.
其中正确的结论有____________.(填上所有正确的结论序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔
(单位:分钟)满足
,经测算,高铁的载客量与发车时间间隔
相关:当
时高铁为满载状态,载客量为
人;当
时,载客量会在满载基础上减少,减少的人数与
成正比,且发车时间间隔为
分钟时的载客量为
人.记发车间隔为
分钟时,高铁载客量为
.
求
的表达式;
若该线路发车时间间隔为
分钟时的净收益
(元),当发车时间间隔为多少时,单位时间的净收益
最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际上钻石的重量计量单位为克拉;已知某种钻石的价值
(美元)与其重量
(克拉)的平方成正比,且一颗重为3克拉的该种钻石的价值为54000美元;
(1)写出
关于
的函数关系式;
(2)若把一颗钻石切割成重量比为
的两颗钻石,求价值损失的百分率;
(3)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为
克拉和
克拉,试用你所学的数学知识分析当
,
满足何种关系时,价值损失的百分率最大.
(注:价值损失的百分率
,在切割过程中重量损耗忽略不计)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一商场对5年来春节期间服装类商品的优惠金额
(单位:万元)与销售额
(单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
日期 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
| 2 | 4 | 5 | 6 | 8 |
| 30 | 40 | 60 | 50 | 70 |
(1)画出散点图,并判断服装类商品的优惠金额与销售额是正相关还是负相关;
![]()
(2)根据表中提供的数据,求出
与
的回归方程
;
(3)若2019年春节期间商场预定的服装类商品的优惠金额为10万元,估计该商场服装类商品的销售额.
参考公式:![]()
参考数据:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com