【题目】某玩具厂拟定生产两款新毛绒玩具样品,一款为毛绒小猪,另一款为毛绒小狗.由设计图知,生产这两款毛绒玩具均需相同材质的填充物、长毛绒、天鹅绒,且每个毛绒小猪需填充物
、长毛绒
、天鹅绒
,每个毛绒小狗需填充物
、长毛绒
、天鹅绒
.现有所需填充物
、长毛绒
、天鹅绒
,若每个毛绒小猪与毛绒小狗的出厂价分别为64元、36元,则生这批毛绒玩具的最大销售额为_______元.
科目:高中数学 来源: 题型:
【题目】如图是一个由正四棱锥
和正四棱柱
构成的组合体,正四棱锥的侧棱长为6,
为正四棱锥高的4倍.当该组合体的体积最大时,点
到正四棱柱
外接球表面的最小距离是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
(
为参数).以原点O为极点,x轴非负半轴为极轴建立极坐标系,直线l的极坐标方程为
.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)点P是曲线C上的动点,求P到直线l的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
为等边三角形,边长为2,
为等腰直角三角形,
,
,
,平面
平面ABCD.
![]()
(1)证明:
平面PAD;
(2)求平面PAD与平面PBC所成锐二面角的余弦值;
(3)棱PD上是否存在一点E,使得
平面PBC?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V.棱数E及面数F满足等式
,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮、简洁的公式之一,现实生活中存在很多奇妙的几何体,现代足球的外观即取自一种不完全正多面体,它是由m块黑色正五边形面料和
块白色正六边形面料构成的.则
( )
![]()
A.20B.18C.14D.12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱
中,四边形ABCD为平行四边形,
且点
在底面上的投影H恰为CD的中点.
![]()
(1)棱BC上存在一点N,使得AD⊥平面
,试确定点N的位置,说明理由;
(2)求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某居民区内有一直角梯形区域
,
,
,
百米,
百米.该区域内原有道路
,现新修一条直道
(宽度忽略不计),点
在道路
上(异于
,
两点),
,
.
![]()
(1)用
表示直道
的长度;
(2)计划在
区域内修建健身广场,在
区域内种植花草.已知修建健身广场的成本为每平方百米4万元,种植花草的成本为每平方百米2万元,新建道路
的成本为每百米4万元,求以上三项费用总和的最小值(单位:万元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:
,过点
且互相垂直的两条动直线
,
与抛物线C分别交于P,Q和M,N.
(1)求四边形
面积的取值范围;
(2)记线段
和
的中点分别为E,F,求证:直线
恒过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com