精英家教网 > 高中数学 > 题目详情

在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=an+1+log2an(n=1,2,3…),求数列{bn}的前n项和Sn

解:(I)设等比数列{an}的公比为q.
由a1a3=4可得a22=4,(1分)
因为an>0,所以a2=2(2分)
依题意有a2+a4=2(a3+1),得2a3=a4=a3q(3分)
因为a3>0,所以,q=2..(4分)
所以数列{an}通项为an=2n-1(6分)
(II)bn=an+1+log2an=2n+n-1(18分)
可得(12分)
=(13分)
分析:(I)求数列{an}的通项公式,设出公比为q,由a1a3=4,a3+1是a2和a4的等差中项,这两个方程联立即可求出首项与公比,通项易求.
(II)若数列{bn}满足bn=an+1+log2an(n=1,2,3…),由(I)知求数列{bn}的前n项和Sn要用分组求和的技巧.
点评:本题考点是等差数列与等比数列的综合,考查等比数列的通项公式、等差数列的性质以及分组求和的技巧,以及根据题设条件选择方法的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案