【题目】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于( )![]()
A.
m![]()
B.
m![]()
C.
m![]()
D.
m![]()
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴建立的极坐标系中,圆
的极坐标方程为
.
(1)求直线
被圆
截得的弦长;
(2)若点
的坐标为
,直线
与圆
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,
,点
分别在边
上,且
,
交
于点
.现将
沿
折起,使得平面
平面
,得到图2.
(Ⅰ)在图2中,求证:
;
(Ⅱ)若点
是线段
上的一动点,问点
在什么位置时,二面角
的余弦值为
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知平面直角坐标系
,以
为极点,
轴的非负半轴为极轴建立极坐标系,
点的极坐标为
,曲线
的参数方程为
(
为参数).
(1)写出点
的直角坐标及曲线
的直角坐标方程;
(2)若
为曲线
上的动点,求
的中点
到直线
:
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中.直线
的参数方程为为
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点.以
轴非负半轴为极轴)中.圆
的极坐标方程是
.
(1)写出直线
的直角坐标方程,并把圆
的极坐标方程化为直角坐标方程;
(2)设圆
上的点
到直线
的距离最小,点
到直线
的距离最大,求点
的横坐标之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an+bn} 的前n项和Sn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com