精英家教网 > 高中数学 > 题目详情
7.有两对夫妇各带一个小孩到动物园游玩,购票后排成一队依次入园.为安全起见,首尾一定要排两位爸爸,另外两个小孩要排在一起,则这六人的入园顺序排法种数为24.(用数字作答)

分析 根据题意,分3步进行分析,①、先分派两位爸爸,必须一首一尾,由排列数公式可得其排法数目,②、两个小孩一定要排在一起,用捆绑法将其看成一个元素,③、将两个小孩与两位妈妈进行全排列,由排列数公式可得其排法数目,由分步计数原理计算可得答案.

解答 解:分3步进行分析,
①、先分派两位爸爸,必须一首一尾,有A22=2种排法,
②、两个小孩一定要排在一起,将其看成一个元素,考虑其顺序有A22=2种排法,
③、将两个小孩与两位妈妈进行全排列,有A33=6种排法,
则共有2×2×6=24种排法,
故答案为:24.

点评 本题考查排列、组合的应用,注意此类问题中特殊元素应该优先分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知不等式|x-a|+|2x-3|>$\frac{a^2}{2}$.
(1)已知a=2,求不等式的解集;
(2)已知不等式的解集为R,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设θ为锐角,若cos(θ-$\frac{3π}{4}$)=$\frac{3}{5}$,则sin(θ+$\frac{π}{4}$)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.红星超市为了了解顾客一次购买某牛奶制品的数量(单位:盒)及结算的时间(单位:分钟)等信息,随机收集了在该超市购买牛奶制品的50位顾客的相关数据,如表所示:
一次购物数量1至2盒3至5盒6至9盒10至17盒18至25盒
顾客数量(人)20141024
结算的时间(分钟/人)11.521.52
(Ⅰ)请估计这50位顾客购买牛奶制品的结算时间的平均值;并求一位顾客的结算时间小于结算时间平均值的概率;
(Ⅱ)从购买牛奶制品的数量不少于10盒的顾客中任选两人,求两位顾客的结算时间之和超过3.5分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={x|y=log2(x-1)},集合A={x||x-2|<1},则∁UA=(  )
A.(3,+∞)B.[3,+∞)C.(1,3)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax有极值1,这里e是自然对数的底数.
(1)求实数a的值,并确定1是极大值还是极小值;
(2)若当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是定义在R上的奇函数,且f(x+2)=f(x-2);当0≤x≤1时,f(x)=$\sqrt{x}$,则f(1)+f(2)+f(3)+…+f(2017)等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的半焦距为c,顶点A(a,0)到渐近线的距离为$\frac{\sqrt{2}}{3}$c,则双曲线的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥E-ABCD中,△ADE是正三角形,侧面ADE⊥底面ABCD,AB∥DC,BD=2DC=4,AD=3,AB=5.
(Ⅰ)求证:BD⊥AE;
(Ⅱ)求二面角B-AE-D的正切值;
(Ⅲ)求三棱锥C-BDE的体积.

查看答案和解析>>

同步练习册答案