【题目】在四面体
中,
分别是
的中点.则下述结论:
①四面体
的体积为
;
②异面直线
所成角的正弦值为
;
③四面体
外接球的表面积为
;
④若用一个与直线
垂直,且与四面体的每个面都相交的平面
去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为
.
其中正确的有_____.(填写所有正确结论的编号)
科目:高中数学 来源: 题型:
【题目】第七届世界军人运动会(以下简称武汉军运会)专题新闻发布会在武汉举行,武汉军运会会徽、吉祥物正式公布.武汉军运会将于
年
月
日举行,赛期
天.若将
名志愿者分配到两个运动场馆进行服务,每个运动场馆至少
名志愿者,则其中志愿者甲、乙或甲、丙被分到同一场馆的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)
,若关于x的方程f2(x)﹣af(x)+a﹣a2=0有四个不等的实数根,则a的取值范围是( )
A.
B.(﹣∞,﹣1)∪[1,+∞)
C.(﹣∞,﹣1)∪{1}D.(﹣1,0)∪{1}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
,在同一平面直角坐标系中,将曲线
上的点按坐标变换
得到曲线
,以原点为极点,
轴的正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线
的极坐标方程;
(Ⅱ)若过点
(极坐标)且倾斜角为
的直线
与曲线
交于
两点,弦
的中点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,且
,满足条件的
点的轨迹为曲线
.
(1)求曲线
的方程;
(2)是否存在过点
的直线
,直线
与曲线
相交于
两点,直线
与
轴分别交于
两点,使得
?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,
,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号
![]()
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,四边形
是边长为2的正方形,
,
为
的中点,点
在
上,
平面
,
在
的延长线上,且
.
![]()
(1)证明:
平面
.
(2)过点
作
的平行线,与直线
相交于点
,当点
在线段
上运动时,二面角
能否等于
?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月1日,庆祝中华人民共和国成立70周年大会、阅兵式、群众游行在北京隆重举行,这次阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,各型飞机160余架、装备580余套,是近几次阅兵中规模最大的一次.某机构统计了观看此次阅兵的年龄在30岁至80岁之间的100个观众,按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求
的值及这100个人的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)用分层抽样的方法在年龄为
、
的人中抽取5人,再从抽取的5人中随机抽取2人接受采访,求接受采访的2人中年龄在
的恰有1人的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com