精英家教网 > 高中数学 > 题目详情

【题目】将圆上每一点的横坐标变为原来的2倍,纵坐标变为原来的4倍,得曲线.

(1)写出的参数方程;

(2)设直线的交点为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,求过线段的中点与垂直的直线的极坐标方程.

【答案】(1)的参数方程为为参数)(2)

【解析】

(1)依题意,得,代入,得,即曲线的方程,进而得出故的参数方程;

(2)联立方程组,求得线段的中点坐标为,及直线斜率为,利用直线的点斜式方程,求得直线的方程,进而得到直线的极坐标方程.

(1)设为圆上的点,在已知变换下所得曲线上的点设

依题意,得,由,即曲线的方程为

的参数方程为为参数).

(2)由,解得

不妨设,则线段的中点坐标为,所求直线斜率为

于是所求直线方程为,化为极坐标方程,并整理得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某学校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm195cm之间,将测量结果按如下方式分成八组:第一组[155160);第二组[160165);…第八组[190195],图是按上述分组方法得到的条形图.

(1)根据已知条件填写将表格填写完整;

组别

1

2

3

4

5

6

7

8

样本

2

4

10

10

15

4

(2)估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数;

(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:边长为的菱形,将沿折起到图中的位置,使得二面角的大小为,则三棱锥的外接球表面积等于_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了整顿食品的安全卫生,食品监督部门对某食品厂生产甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克).

规定:当食品中的有害微量元素的含量在时为一等品,在为二等品,20以上为劣质品.

1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个,求甲的一等品数与乙的一等品数相等的概率;

2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元,根据上表统计得到甲、乙两种食品为一等品、二等品、劣质品的频率,分别估计这两种食品为一等品、二等品、劣质品的概率,若分别从甲、乙食品中各抽取1件,设这两件食品给该厂带来的盈利为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由参照附表,得到的正确结论是( )

爱好

不爱好

合计

男生

20

5

25

女生

10

15

25

合计

30

20

50

0.010

0.005

0.001

6.635

7.879

10.828

A.99.5%以上的把握认为爱好该项运动与性别有关

B.99.5%以上的把握认为爱好该项运动与性别无关

C.在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.

(1)求获得复赛资格应划定的最低分数线;

(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间各抽取多少人?

(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:

月份

违章驾驶员人数

(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程

(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,().

(1)若函数有极值,求的值;

(2)若函数在区间上为减函数,求的取值范围;

(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用74胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.

1)求乙以41获胜的概率;

2)求甲获胜且比赛局数多于5局的概率.

查看答案和解析>>

同步练习册答案