【题目】如图,三棱柱
中,侧面
为菱形,
的中点为O,且
平面
.
![]()
(1)证明:
;
(2)若
,
,
,求
到平面ABC的距离.
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,PA=AB=1.
![]()
(1)证明:EF∥平面PDC;
(2)求点F到平面PDC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集
(
,
)具有性质
:对任意的
、
(
),
与
两数中至少有一个属于
.
(1)分别判断数集
与
是否具有性质
,并说明理由;
(2)证明:
,且
;
(3)证明:当
时,
、
、
、
、
成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
, 过点
的直线
:
与椭圆
交于M、N两点(M点在N点的上方),与
轴交于点E.
(1)当
且
时,求点M、N的坐标;
(2)当
时,设
,
,求证:
为定值,并求出该值;
(3)当
时,点D和点F关于坐标原点对称,若△MNF的内切圆面积等于
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线
的参数方程为
(
,
为参数),曲线
上的点
对应的参数
.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.射线
与曲线
交于点
.
(1)求曲线
的直角坐标方程;
(2)若点
,
在曲线
上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在四棱锥S﹣AFCD中,平面SCD⊥平面AFCD,∠DAF=∠ADC=90°,AD=1,AF=2DC=4,
,B,E分别为AF,SA的中点.
![]()
(1)求证:平面BDE∥平面SCF
(2)求二面角A﹣SC﹣B的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左右焦点分别为
,
,左顶点为
,点
在椭圆
上,且
的面积为
.
(1)求椭圆
的方程;
(2)过原点
且与
轴不重合的直线交椭圆
于
,
两点,直线
分别与
轴交于点
,
,.求证:以
为直径的圆恒过交点
,
,并求出
面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com