【题目】已知数集
(
,
)具有性质
:对任意的
、
(
),
与
两数中至少有一个属于
.
(1)分别判断数集
与
是否具有性质
,并说明理由;
(2)证明:
,且
;
(3)证明:当
时,
、
、
、
、
成等比数列.
【答案】(1)数集具有性质P,理由见解析;(2)证明见解析;(3)证明见解析.
【解析】
(1)由定义直接判断(2)由已知得anan与
中至少有一个属于A,从而得到a1=1;再由1=a1<a2<…<an,得到akanA(k=2,3,…,n).由A具有性质P可知
∈A(k=1,2,3,…,n),由此能证明a1=1,且
an(3)当n=5时,
,从而a3a4∈A,
∈A,由此能证明
,故成等比数列.
(1)由于3×4与
均不属于数集{1,3,4},
所以数集{1,3,4}不具有性质P.
由于1×2,1×3,1×6,2×3,
,
,
,
,
,
都属于数集{1,2,3,6},
所以数集{1,2,3,6}具有性质P.
(2)证明:
因为A={a1,a2,…,an}具有性质P,
所以anan与
中至少有一个属于A.
由于1≤a1<a2<…<an,所以anan>an,故ananA,
从而1
∈A,故a1=1;
因为1=a1<a2<…<an,所以akan>an,故akanA(k=2,span>3,…,n).
由A具有性质P可知
∈A(k=1,2,3,…,n),
又因为
,
所以
a1,
,…,
,
,
从而
a1+a2+…+an﹣1+an,
故a1=1,且
an.
(3)证明:
由(2)知,当n=5时,有
a2,
,即
,
因为1=a1<a2<…<a5,
所以a3a4>a2a4=a5,故a3a4∈A,
由A具有性质P,可知
∈A,
由
,得
∈A,且1
a3,
所以
a2,
故
,
所以
,
故
、
、
、
、
成等比数列.
科目:高中数学 来源: 题型:
【题目】如图,直角梯形
与等腰直角三角形
所在的平面互相垂直.
,
,
,
.
![]()
(1) 求证:
;
(2) 求直线
与平面
所成角的正弦值;
(3) 线段
上是否存在点
,使
平面![]()
若存在,求出
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在D上的函数
在点
处的切线方程为
,当
时,若
在D内恒成立,则称P点为函数
的“类对称中心点”,则函数
的“类对称中心点”的坐标是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为
元,低于
箱按原价销售,不低于
箱则有以下两种优惠方案:①以
箱为基准,每多
箱送
箱;②通过双方议价,买方能以优惠
成交的概率为
,以优惠
成交的概率为
.
甲、乙两单位都要在该厂购买
箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
某单位需要这种零件
箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知棱
,
,
两两垂直,长度分别为1,2,2.若
(
),且向量
与
夹角的余弦值为
.
![]()
(1)求
的值;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com