【题目】已知点
和圆
,过
的动直线
与圆
交于
、
两点,过
作直线
,交
于
点.
![]()
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)若不经过
的直线
与轨迹
交于
两点,且
.求证:直线
恒过定点.
科目:高中数学 来源: 题型:
【题目】已知命题
函数
在
上单调递减;命题
曲线
为双曲线.
(Ⅰ)若“
且
”为真命题,求实数
的取值范围;
(Ⅱ)若“
或
”为真命题,“
且
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(其中
为常量,且
)的图像经过点
.
(1)求
的值;
(2)当
时,函数
的图像恒在函数
图像的上方,求实数
的取值范围;
(3)是否存在实数
,使得函数
的定义域为
,值域为
?若存在,求出
的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若函数f(x)=ax2-x-1有且仅有一个零点, 求实数a的值.
(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在
市的普及情况,
市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用网络外卖 | 偶尔或不用网络外卖 | 合计 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合计 | 110 | 90 | 200 |
(1)根据表中数据,能否在犯错误的概率不超过
的前提下认为
市使用网络外卖的情况与性别有关?
(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从
市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知底面为正方形的四棱锥
,各侧棱长都为
,底面面积为16,以
为球心,2为半径作一个球,则这个球与四棱锥
相交部分的体积是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】构造棱长为4的正方体,四棱锥O-ABCD的顶点O为正方体的中心,底面与正方体的一个底面重合.可知所求体积是正方体内切球体积的
,所以这个球与四棱锥O-ABCD相交部分的体积是:
.
本题选择C选项.
点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.
【题型】单选题
【结束】
13
【题目】若
,
为第二象限角,则
__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且
过点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点(点
均在第一象限),
与
轴,
轴分别交于
两点,且满足
(其中
为坐标原点).证明:直线
的斜率为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com