如图1,在直角梯形
中,
,
,且
.
现以
为一边向梯形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.![]()
![]()
(1)求证:
∥平面
;
(2)求证:
;
(3)求点
到平面
的距离.
(1)见解析(2)见解析(3)![]()
解析试题分析:
(1)要证明线面平行,取
中点
,连结
,其中线段BN在面BEC中,根据线面平行的判断,只需要证明线段BN与AM平行即可,根据MN为所在线段的中点,利用中位线定理即可得到MN平行且等于DC的一半,题目已知AB平行且等于DC的一半,则可以得到MN与AB平行且相等,即四边形ABMN为平行四边形,而AM与BN为该平行四边形的两条对边,则AM与BN平行,即得到线段AM平行于面BEC.
(2)题目已知面ABCD与ADEF垂直且ED垂直于这两个面的交线,根据面面垂直的性质定理可得线段ED垂直于面ABCD,再根据线面垂直的性质可得到BC垂直于ED,根据梯形ABCD为直角梯形和边长关系和勾股定理可以得到BC与BD垂直,即线段BC与面BED中两条相交的线段ED,BD相互垂直,根据线面垂直的判断即可得到线段BC垂直于面BED
(3)要求点面距离可以考虑利用三棱锥
体积的等体积法,即分别以D点和E点作为顶点求解三棱锥D-BEC的体积,当以E作为顶点时,DE为高,三角形BCD为底面,求出高和底面积得到三棱锥的体积,当D为顶点,此时,高为D到面BEC的距离,而三角形BEC为底面,利用三角形的勾股定理得到BE的长度,求出三角形BEC的面积,利用三棱锥的体积公式即可得到D到面BEC的距离.
试题解析:
(1)证明:取
中点
,连结
.
在△
中,
分别为
的中点,
所以
∥
,且
.
由已知
∥
,
,
所以
∥
,且
. 3分
所以四边形
为平行四边形.
所以
∥
. 4分
又因为
平面
,且
平面
,
所以
∥平面
. 5分![]()
(2)在正方形
中,
.
又因为平面![]()
平面
,且平面
平面
,
所以
平面
.
所以
. 7分
在直角梯形
中,
,
,可得
.
在△
中,
,
所以
.
所以
. 8分
所以
平面
. 10分
(3)解法一:因为
平面
,所以平面
平面
. 11分
过点
作
的垂线交
于点
,则
平面![]()
所以点
到平面
的距离等于线段
的长度 12分
在直角三角形
中,![]()
所以![]()
所以点
到平面![]()
科目:高中数学 来源: 题型:解答题
如图,ABCD是边长为2的正方形,
,ED=1,
//BD,且
.
(1)求证:BF//平面ACE;
(2)求证:平面EAC
平面BDEF;
(3)求二面角B-AF-C的大小.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥
中,底面
是正方形,侧面
底面
,
,
分别为
,
中点,
.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在一点
,使
平面
?若存在,指出点
的位置;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN
平面ABCD,E,F分别为MA,DC的中点,求证:![]()
(1)EF//平面MNCB;
(2)平面MAC
平面BND.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥
的底面
为一直角梯形,侧面PAD是等边三角形,其中
,
,平面
底面
,
是
的中点.
(1)求证:
//平面
;
(2)求证:![]()
;
(3)求
与平面
所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD与四边形
都为正方形,
,F
为线段
的中点,E为线段BC上的动点.![]()
(1)当E为线段BC中点时,求证:
平面AEF;
(2)求证:平面AEF![]()
平面;
(3)设
,写出
为何值时MF⊥平面AEF(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P
ABCD中,底面是边长为2
的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2
,M、N分别为PB、PD的中点.![]()
(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角A
MN
Q的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com