精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,过点且互相垂直的两条直线分别与圆交于点AB,与圆交于点C,D.

(1) 若AB,求CD的长;

(2)若直线斜率为2,求的面积;

(3) 若CD的中点为E,求△ABE面积的取值范围.

【答案】(1) (2) (3) .

【解析】

(1)分析直线斜率是否存在,当斜率存在时,利用圆中半弦长,半径,弦心距构成直角三角形求解即可(2)直线斜率为2,则直线方程为,求出弦长,点M到直线的距离,利用三角形面积公式求解即可(3)表示出△ABE的面积S=AB·d=2,令,换元后根据二次函数求最值即可.

(1) 由题可知,直线AB斜率显然存在,设为k,则直线AB:y=kx+1.

因为O点到直线AB的距离d1

+=4,

∴AB=2

由2得k2=15.

因为直线AB与直线CD互相垂直,则直线CD:y=x+1,

∴M点到直线CD的距离d2

=1-,CD=2=2.

(2) 直线斜率为2,则直线方程为

到直线距离为到直线距离为

(3)当直线AB的斜率不存在时,△ABE的面积S=×4×2=4;

当直线AB的斜率存在时,设为k,则直线AB:y=kx+1,k≠0,直线CD:y=-x+1.

<1得k2>3, 所以k∈(-∞,-)∪(,+∞).

因为=4,所以AB=2.

因为E点到直线AB的距离即M点到直线AB的距离d=

所以△ABE的面积S=AB·d=2.

,则S=

.

综上,△ABE面积的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数

(Ⅰ)若的最大值为,求实数的值;

(Ⅱ)对于任意的,总有.求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:(x-2)(xm)≤0,qx2+(1-m)xm≤0.

(1)若m=3,命题“pq”为真命题,求实数x的取值范围.

(2)若pq的必要不充分条件,求实数m的取范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是  

A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球

C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义下凸函数如下:设f(x)为区间I上的函数,若对任意的x1 , x2∈I总有f( )≥ ,则称f(x)为I上的下凸函数,某同学查阅资料后发现了下凸函数有如下判定定理和性质定理: 判定定理:f(x)为下凸函数的充要条件是f″(x)≥0,x∈I,其中f″(x)为f(x)的导函数f′(x)的导数.
性质定理:若函数f(x)为区间I上的下凸函数,则对I内任意的x1 , x2 , …,xn , 都有 ≥f( ).
请问:在△ABC中,sinA+sinB+sinC的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=atanx+bx3+cx(a、b、c∈R),选取a、b、c的一组值计算f(1)、f(﹣1),所得出的正确结果可能是(
A.2和1
B.2和0
C.2和﹣1
D.2和﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某气象站观测点记录的连续4天里,AQI指数M与当天的空气水平可见度y(单位cm)的情况如下表1:

M

900

700

300

100

y

0.5

3.5

6.5

9.5

哈尔滨市某月AQI指数频数分布如下表2:

M

[0,200]

(200,400]

(400,600]

(600,800]

(800,1000]

频数

3

6

12

6

3


(1)设x= ,根据表1的数据,求出y关于x的回归方程; (参考公式: ;其中
(2)小张开了一家洗车店,经统计,当M不高于200时,洗车店平均每天亏损约2000元;当M在200至400时,洗车店平均每天收入约4000元;当M大于400时,洗车店平均每天收入约7000元;根据表2估计小张的洗车店该月份平均每天的收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.

(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;

(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:为圆柱的底面枳,为圆柱的高)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为 (θ为参数),直线l的极坐标方程为ρcos=2.

(1)写出曲线C的普通方程和直线l的直角坐标方程;

(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

同步练习册答案