【题目】 据观测统计,某湿地公园某种珍稀鸟类的现有个数约
只,并以平均每年
的速度增加.
(1)求两年后这种珍稀鸟类的大约个数;
(2)写出
(珍稀鸟类的个数)关于
(经过的年数)的函数关系式;
(3)约经过多少年以后,这种鸟类的个数达到现有个数的
倍或以上?(结果为整数)(参考数据:
,
)
科目:高中数学 来源: 题型:
【题目】2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本
万元,且
,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.
(1)求出2019年的利润
(万元)关于年产量x(百辆)的函数关系式;(利润=销售额
成本)
(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,且
).
(Ⅰ)求函数
的单调区间;
(Ⅱ)求函数
在
上的最大值.
【答案】(Ⅰ)
的单调增区间为
,单调减区间为
.(Ⅱ)当
时,
;当
时,
.
【解析】【试题分析】(I)利用
的二阶导数来研究求得函数
的单调区间.(II) 由(Ⅰ)得
在
上单调递减,在
上单调递增,由此可知
.利用导数和对
分类讨论求得函数在
不同取值时的最大值.
【试题解析】
(Ⅰ)
,
设
,则
.
∵
,
,∴
在
上单调递增,
从而得
在
上单调递增,又∵
,
∴当
时,
,当
时,
,
因此,
的单调增区间为
,单调减区间为
.
(Ⅱ)由(Ⅰ)得
在
上单调递减,在
上单调递增,
由此可知
.
∵
,
,
∴
.
设
,
则
.
∵当
时,
,∴
在
上单调递增.
又∵
,∴当
时,
;当
时,
.
①当
时,
,即
,这时,
;
②当
时,
,即
,这时,
.
综上,
在
上的最大值为:当
时,
;
当
时,
.
[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与
轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
【题型】解答题
【结束】
22
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的普通方程为
. 在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(Ⅰ) 写出圆
的参数方程和直线
的直角坐标方程;
( Ⅱ ) 设直线
与
轴和
轴的交点分别为
,
为圆
上的任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的普通方程为
. 在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(Ⅰ) 写出圆
的参数方程和直线
的直角坐标方程;
( Ⅱ ) 设直线
与
轴和
轴的交点分别为
,
为圆
上的任意一点,求
的取值范围.
【答案】(1)
;
.
(2)
.
【解析】【试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得
两点的坐标, 设点
,代入向量
,利用三角函数的值域来求得取值范围.
【试题解析】
(Ⅰ)圆
的参数方程为
(
为参数).
直线
的直角坐标方程为
.
(Ⅱ)由直线
的方程
可得点
,点
.
设点
,则
.
.
由(Ⅰ)知
,则
.
因为
,所以
.
【题型】解答题
【结束】
23
【题目】选修4-5:不等式选讲
已知函数
,
.
(Ⅰ)若对于任意
,
都满足
,求
的值;
(Ⅱ)若存在
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,命题
方程
表示焦点在
轴上的椭圆,命题
方程
表示双曲线.
(1)若命题
是真命题,求实数
的范围;
(2)若命题“
或
”为真命题,“
且
”是假命题,求实数
的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人在微信群中发了一个8元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于其他任何人的概率为
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有一组圆
.下列四个命题正确的是( )
A. 存在
,使圆与
轴相切
B. 存在一条直线与所有的圆均相交
C. 存在一条直线与所有的圆均不相交
D. 所有的圆均不经过原点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产甲、乙两种产品所得的利润分别为
和
(万元),事先根据相关资料得出它们与投入资金
(万元)的数据分别如下表和图所示:其中已知甲的利润模型为
,乙的利润模型为
.(
为参数,且
).
|
|
|
|
|
|
|
|
|
|
![]()
(1)请根据下表与图中数据,分别求出甲、乙两种产品所得的利润与投入资金
(万元)的函数模型
(2)今将
万资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于
万元.设对乙种产品投入资金
(万元),并设总利润为
(万元),如何分配投入资金,才能使总利润最大?并求出最大总利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com