精英家教网 > 高中数学 > 题目详情
已知数列{an}满足
(I)求an的通项公式;
(II)若,求bn的前n项和Sn
(III)若.求证:
【答案】分析:(Ⅰ)已知Sn求an的问题可以利用 进行求解,能合并就合并,从而求出数列{an}的通项公式;
(Ⅱ)根据(Ⅰ)求得 bn=n•2n,是由一个等差数列与一等比数列的乘积,可利用错位相减法进行求和,再Sn的等式两边同时乘以公比,然后进行作差即可求出数列{bn}的前n项和Sn
(III))把(Ⅰ)求得的结果代入,通过对cn进行放缩,达到求和的目的,从而证明了不等式的右边;要证不等式的左边,构造函数f(x)=2x-x2,求导,借助于该函数的单调性证明该不等式的左边,从而证明结论正确.
解答:解:(I)当n≥2时,
当n=1时,a1=1成立,故
(II)bn=n•2n
Sn=1•21+2•22+3•23+…+n•2n
2Sn=1•22+2•23+3•24+…+(n-1)•2n+n•2n+1
由①-②得,-Sn=21+22+23++2n-n•2n+1
=
故Sn=(n-1)•2n+1+2
(III)证明:
令f(x)=2x-x2
f′(x)=2xln2-2x,又
故f′′(x)=2x(ln2)2-2≥f′′(5)>0
故f′(x)在[5,+∞)上单调递增,故f′(x)≥f′(5)>0
故f(x)在[5,+∞)上单调递增,故f(x)≥f(5)=7>0
故当n>4时,2n>n2恒成立,即



综上可得,
点评:此题是难题.考查学生根据数列递推公式求数列的通项公式并利用错位相减法求和,以及把不能求和的数列问题通过放缩的方法达到求和的目的.特别是问题(III)的设问形式,构造函数,借助于函数的单调性证明数列不等式,是高考的热点,也是难点,注意体会.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案