【题目】已知函数
,其中
为常数,设
为自然对数的底数.
(1)当
时,求
的最大值;
(2)若
在区间
上的最大值为
,求
的值;
(3)设
,若
,对于任意的两个正实数
,证明:
.
【答案】(1)最大值为﹣1;(2)a=﹣e2;(3)见解析.
【解析】试题分析:(1)在定义域(0,+∞)内对函数f(x)求导,求其极大值,若是唯一极值点,则极大值即为最大值.
(2)在定义域(0,+∞)内对函数f(x)求导,对a进行分类讨论并判断其单调性,根据f(x)在区间(0,e]上的单调性求其最大值,并判断其最大值是否为﹣3,若是就可求出相应的最大值.
(3)先求导,再求导,得到g′(x)为增函数,不妨令x2>x1,构造函数
,利用导数即可证明.
试题解析:
(1)易知f(x)定义域为(0,+∞),
当a=﹣1时,f(x)=﹣x+lnx,
,
令f′(x)=0,得x=1.
当0<x<1时,f′(x)>0;当x>1时,f′(x)<0,
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
f(x)max=f(1)=﹣1.
∴函数f(x)在(0,+∞)上的最大值为﹣1,
(2)∵
.
①若
,则f′(x)≥0,从而f(x)在(0,e]上是增函数,
∴f(x)max=f(e)=ae+1≥0,不合题意,
②若
,则由
,即![]()
由
,即
,
从而f(x)在(0,﹣
)上增函数,在(﹣
,e]为减函数
∴![]()
令
,则
,
∴a=﹣e2,
(3)证明:∵g(x)=xf(x)=ax2+xlnx,x>0
∴
,
∴g′(x)为增函数,不妨令x2>x1
令
,/p>
∴
,
∵
,
∴![]()
而h(x1)=0,知x>x1时,h(x)>0
故h(x2)>0,
即
.
科目:高中数学 来源: 题型:
【题目】某市高中全体学生参加某项测评,按得分评为
两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为
的学生中有40%是男生,等级为
的学生中有一半是女生.等级为
和
的学生统称为
类学生,等级为
和
的学生统称为
类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,
类别 | 得分( | |
|
|
|
|
| |
|
|
|
|
| |
表1
![]()
(I)已知该市高中学生共20万人,试估计在该项测评中被评为
类学生的人数;
(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名
类学生”的概率;
(Ⅲ)在这10000名学生中,男生占总数的比例为51%,
类女生占女生总数的比例为
,
类男生占男生总数的比例为
,判断
与
的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,一个焦点坐标是
,离心率为
.
(1)求椭圆的标准方程;
(2)过
作直线交椭圆于
两点,
是椭圆的另一个焦点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
:
满足:
,
或1(
).对任意
,都存在
,使得
.,其中
且两两不相等.
(I)若
.写出下列三个数列中所有符合题目条件的数列的序号;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)记
.若
,证明:
;
(Ⅲ)若
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数),设
与
的交点为
,当
变化时,
的轨迹为曲线
.
(1)写出
的普遍方程及参数方程;
(2)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,设曲线
的极坐标方程为
,
为曲线
上的动点,求点
到
的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com