【题目】已知椭圆的中心在坐标原点,一个焦点坐标是
,离心率为
.
(1)求椭圆的标准方程;
(2)过
作直线交椭圆于
两点,
是椭圆的另一个焦点,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.
![]()
(1)证明:A1O∥平面B1CD1;
(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面
为矩形,侧面
为正三角形,且平面
平面,
为
中点,
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)若二面角
的平面角大小
满足
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,一个焦点坐标是
,离心率为
.
(1)求椭圆的标准方程;
(2)过
作直线交椭圆于
两点,
是椭圆的另一个焦点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,记
.
(1)求证:
在区间
内有且仅有一个实数;
(2)用
表示
中的最小值,设函数
,若方程
在区间
内有两个不相等的实根
,记
在
内的实根为
.求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
为常数,设
为自然对数的底数.
(1)当
时,求
的最大值;
(2)若
在区间
上的最大值为
,求
的值;
(3)设
,若
,对于任意的两个正实数
,证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com