精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,前n项和为Sn,若Sm,Sm+2,Sm+1成等差数列,则am,am+2,am+1成等差数列.

(1)写出这个命题的逆命题;

(2)判断逆命题是否为真,并给出证明.

解:(1)逆命题:在等比数列 {an}中,前n项和为Sn,若am,am+2,am+1成等差数列,则Sm,Sm+2,Sm+1成等差数列;

(2)设{an}的首项为a1,公比为q,则2am+2=am+am+1,于是2a1qm+1=a1qm-1+a1qm.

由a1≠0,q≠0,化简上式得2q2-q-1=0,

解得q=1或q=-,

当q=1时,∵Sm=ma1,Sm+2=(m+2)a1,S(m+1)=(m+1)a1,

∴Sm+Sm+1≠2Sm+2,

即Sm,Sm+2,Sm+1不成等差数列;

当q=-时,∵Sm+Sm+1=

而2Sm+2=

∴Sm+Sm+1=2Sm+2,即Sm,Sm+2,Sm+1成等差数列;

综上得,当公比q=1时,逆命题为假,当q=-时,逆命题为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案