精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧棱底面,底面为长方形,且的中点,作于点.

(1)证明:平面

(2)若三棱锥的体积为,求直线与平面所成角的正弦值;

(3)在(2)的条件下,求二面角的余弦值.

【答案】(1)见解析;(2);(3).

【解析】分析:(1)推导出,从而平面,进而,再证出,从而平面,再由,能证明平面
(2)由两两垂直,以为坐标原点,建立空间直角坐标系,利用向量法能求出直线与平面所成角的正弦值.
(3)求出平面的法向量和平面PBC的法向量,利用向量法能求出二面角D-BP-C的余弦值.

详解:

(1)证明:底面平面,∴

由于底面为长方形,,而

平面

平面,∴

的中点,

,∴平面

,又

平面.

(2)由题意易知两两垂直,以为坐标原点,建立如图空间直角坐标系,可得

,则有,∴

设直线与平面所成角为,且由(1)知为平面的法向量

所以直线与平面所成角的正弦值为.

(3)由(2)知

设平面的法向量,由,则

,则

由(1)平面

为平面PBC的法向量,

设二面角,则

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】节能减排以来,兰州市100户居民的月平均用电量单位:度,以分组的频率分布直方图如图.

求直方图中x的值;求月平均用电量的众数和中位数;

估计用电量落在中的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数有两个零点

(i)求满足条件的最小正整数的值.

(ii)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各随机抽取了100件产品作为样本来检测一项质量指标值,若产品的该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图是乙套设备的样本的频率分布直方图.

表甲套设备的样本的频数分布表

质量指标值

频数

2

10

36

38

12

2

(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?

(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.

甲套设备

乙套设备

合计

合格品

不合格品

合计

附表及公式:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的定义域;

(2)判断的奇偶性并给予证明;

(3)求关于x的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:

女性用户

分值区间

[5060

[6070

[7080

[8090

[90100]

频数

20

40

80

50

10

男性用户

分值区间

[5060

[6070

[7080

[8090

[90100]

频数

45

75

90

60

30

(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);

(2)把评分不低于70分的用户称为评分良好用户,能否有的把握认为评分良好用户与性别有关?

参考附表:

参考公式,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的离心率为,且经过点.

1)求椭圆的方程;

2)直线与椭圆相交于两点,若,求为坐标原点)面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2﹣2|x|

1)将函数fx)写成分段函数;

2)判断函数的奇偶性,并画出函数图象.

3)若函数在[a, +∞)上单调,求a的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

(1)求证:直线过定点;

(2)求直线被圆所截得的弦长最短时的值;

(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.

查看答案和解析>>

同步练习册答案