精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,=(0,5),且,则点C的坐标为   
【答案】分析:本题考查的知识点是平面向量的平行与垂直的性质,我们设C点坐标为(x,y),则我们可以表示出向量的坐标,由,我们结合“两个向量若平行,交叉相乘差为0,两个向量若垂直,对应相乘和为0”,可以构造关于x,y的方程,解方程即可求出点C的坐标.
解答:解:设C点坐标为(x,y)
则∵=(0,5),
=(x+3,y-1)
=(x,y-5)
=(3,4)
又∵

解得:
即C点坐标为(12,-4)
故答案为:(12,-4)
点评:判断两个向量的关系(平行或垂直)或是已知两个向量的关系求未知参数的值,要熟练掌握向量平行(共线)及垂直的坐标运算法则,即“两个向量若平行,交叉相乘差为0,两个向量若垂直,对应相乘和为0”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,点A(2,1),点P在区域
y≤x
x+y≥2
y>3x-6
内运动,则
OA
OP
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,
设函数f(x)=
OM
ON

(Ⅰ)求函数y=f(x)的表达式和对称轴方程;
(Ⅱ)若角C为△ABC的三个内角中的最大角,且y=f(C)的最小值为0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,点M(3,2),若N(x,y)满足不等式组
x≥1
y≥0
x+y≤4
,则
OM
ON
 的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,A,B两点的坐标均满足不等式组
x-3y+1≤0
x+y-3≤0
x-1≥0
,则tan∠AOB的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,设函数f(x)=
OM
ON

(1)求函数y=f(x)的表达式;
(2)若角C∈[
π
3
,π)
且y=f(C)的最小值为0,求a的值;
(3)在(2)的条件下,试画出y=f(x)(x∈[0,π])的简图.

查看答案和解析>>

同步练习册答案