【题目】已知圆
的圆心为原点
,且与直线
相切.
![]()
(1)求圆
的方程;
(2)点
在直线
上,过
点引圆
的两条切线
,
,切点为
,
,求证:直线
恒过定点.
(3)求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求证:
是
上的奇函数;
(2)求
的值;
(3)求证:
在
上单调递增,在
上单调递减;
(4)求
在
上的最大值和最小值;
(5)直接写出一个正整数
,满足
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
,其中
为参数,在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
, 直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点.求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的上顶点为
,且过点
.
(1)求椭圆
的方程及其离心率;
(2)斜率为
的直线
与椭圆
交于
两个不同的点,当直线
的斜率之积是不为0的定值时,求此时
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】幻彩摩天轮位于中山市西区兴中广场C段4层高的建筑之上,与中山市第一家四星级酒店——富华酒店隔河相望,其外观是参考世界最高的摩天轮新加坡“飞行者”的设计,轮体上有36个吊舱,共可同时承载288人从高空俯瞰岐江一河两岸的美景.幻彩摩天轮直径为83m,每20min转一圈,最高点离地108m,摩天轮上的点P的起始位置在最低点处.已知在时刻t(min)时P距离地面的高度
,(其中
),
![]()
(1)求
的函数解析式.
(2)当离地面
m以上时,可以俯瞰富华酒店顶楼,求转一圈中有多少时间可以俯瞰富华酒店顶楼?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
(
,
,
,
)的部分图象如图所示.
![]()
(1)求函数
的解析式;
(2)求函数
的最小值及
取到最小值时自变量x的集合;
(3)将函数图像上所有点的纵坐标不变,横坐标变为原来的
(
)倍,得到函数
的图象.若函数
在区间
上恰有5个零点,求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com