【题目】已知函数
.
(1)求证:
是
上的奇函数;
(2)求
的值;
(3)求证:
在
上单调递增,在
上单调递减;
(4)求
在
上的最大值和最小值;
(5)直接写出一个正整数
,满足
.
【答案】(1)证明见解析;(2)
;(3)证明见解析;(4)最大值
,最小值
;(5)答案不唯一,具体见解析.
【解析】
(1)利用奇偶性的定义证明即可;
(2)代值计算即可得出
的值;
(3)任取
,作差
,通分、因式分解后分
和
两种情况讨论
的符号,即可证明出结论;
(4)利用(3)中的结论可求出函数
在区间
上的最大值和最小值;
(5)可取满足
的任何一个整数
,利用函数
的单调性和不等式的性质可推导出
成立.
(1)函数
的定义域为
,定义域关于原点对称,
且
,因此,函数
是
上的奇函数;
(2)
;
(3)任取
,![]()
.
当
时,
,
,
,则
;
当
时,
,
,
,则
.
因此,函数
在
上单调递增,在
上单调递减;
(4)由于函数
在
上单调递增,在
上单调递减,
当
时,函数
取最大值,即
;
当
时,
,
所以,当
时,函数
取最小值,即
.
综上所述,函数
在
上的最大值为
,最小值为
;
(5)由于函数
在
上单调递减,
当
时,
,
所以,满足
任何一个整数
均满足不等式
.
可取
,满足条件.
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在原点,焦点在
轴上,离心率
,点![]()
分别为椭圆的左右焦点,过右焦点
且垂直于长轴的弦长为
.
(1)求椭圆的标准方程;
(2)过椭圆左焦点
作直线
,交椭圆于![]()
两点,若
,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足
,且
,![]()
(1)求证数列
是等差数列,并求数列
的通项公式;
(2)记
,求
;
(3)是否存在实数k,使得
对任意
都成立?若存在,求实数k的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在含有
个元素的集合
中,若这
个元素的一个排列(
,
,…,
)满足
,则称这个排列为集合
的一个错位排列(例如:对于集合
,排列
是
的一个错位排列;排列
不是
的一个错位排列).记集合
的所有错位排列的个数为
.
(1)直接写出
,
,
,
的值;
(2)当
时,试用
,
表示
,并说明理由;
(3)试用数学归纳法证明:
为奇数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的圆心为原点
,且与直线
相切.
![]()
(1)求圆
的方程;
(2)点
在直线
上,过
点引圆
的两条切线
,
,切点为
,
,求证:直线
恒过定点.
(3)求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,D是AC的中点,四边形BDEF是菱形,平面
平面ABC,
,
,
.
![]()
若点M是线段BF的中点,证明:
平面AMC;
求平面AEF与平面BCF所成的锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com