(本小题满分12分)
双曲线
与双曲线
有共同的渐近线,且经过点
,椭圆
以双曲线
的焦点为焦点且椭圆上的点与焦点的最短距离为
,求双曲线
和椭圆
的方程。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:
的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在
ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求
ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=
,∠PF2F1=
,求cos![]()
的值及
PF1F2的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆C:
=1(a>b>0)的两个焦点分别为F1(﹣c,0),F2(c,0),M是椭圆短轴的一个端点,且满足![]()
=0,点N( 0,3 )到椭圆上的点的最远距离为5![]()
(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,
;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)已知椭圆
的离心率为
,
为椭圆的右焦点,
两点在椭圆
上,且
,定点
。
(1)若
时,有
,求椭圆
的方程;
(2)在条件(1)所确定的椭圆
下,当动直线
斜率为k,且设
时,试求
关于S的函数表达式f(s)的最大值,以及此时
两点所在的直线方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分) 已知
在抛物线
上,
的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知动圆P(圆心为点P)过定点A(1,0),且与直线
相切。记动点P的轨迹为C。
(Ⅰ)求轨迹C的方程;
(Ⅱ)设过点P的直线l与曲线C相切,且与直线
相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知点F( 1,0),
与直线4x+3y + 1 =0相切,动圆M与
及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向
各引一条切线,切点 分别为P,Q,记
.求证
是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
及点
,直线
的斜率为1且不过点P,与抛物线交于A,B两点。
(1) 求直线
在
轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C,D,证明:AD、BC交于定点。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某海域有
、
两个岛屿,
岛在
岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线
,曾有渔船在距
岛、
岛距离和为8海里处发现过鱼群。以
、
所在直线为
轴,
的垂直平分线为
轴建立平面直角坐标系。![]()
(1)求曲线
的标准方程;(6分)
(2)某日,研究人员在
、
两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),
、
两岛收到鱼群在
处反射信号的时间比为
,问你能否确定
处的位置(即点
的坐标)?(8分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com