(12分) 已知
在抛物线
上,
的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2
,离心率e=
,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本大题满分14分)
已知△
的两个顶点
的坐标分别是
,
,且
所在直线的斜率之积等于
.
(Ⅰ)求顶点
的轨迹
的方程,并判断轨迹
为何种圆锥曲线;
(Ⅱ)当
时,过点
的直线
交曲线
于
两点,设点
关于
轴的对称点为
(
不重合).求证直线
与
轴的交点为定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设双曲线
的方程为
,
、
为其左、右两个顶点,
是双曲线
上的任意一点,作
,
,垂足分别为
、
,
与
交于点
.
(1)求
点的轨迹
方程;
(2)设
、
的离心率分别为
、
,当
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
已知点
,
是抛物线
上相异两点,且满足
.
(Ⅰ)若
的中垂线经过点
,求直线
的方程;
(Ⅱ)若
的中垂线交
轴于点
,求
的面积的最大值及此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知中心在坐标原点O,焦点在
轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线
平行于
,且与椭圆交于A、B两个不同点.
(ⅰ)若
为钝角,求直线
在
轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com