【题目】如图,设Ox、Oy是平面内相交成45°角的两条数轴,
、
分别是x轴、y轴正方向同向的单位向量,若向量
=x
+y
,则把有序数对(x,y)叫做向量
在坐标系xOy中的坐标,在此坐标系下,假设
=(﹣2,2
),
=(2,0),
=(5,﹣3
),则下列命题不正确的是( ) ![]()
A.
=(1,0)
B.|
|=2 ![]()
C.
∥ ![]()
D.
⊥ ![]()
科目:高中数学 来源: 题型:
【题目】已知不等式组
表示的平面区域为D,则
(1)z=x2+y2的最小值为 .
(2)若函数y=|2x﹣1|+m的图象上存在区域D上的点,则实数m的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域是D,若存在常数m、M,使得m≤f(x)≤M对任意x∈D成立,则称函数f(x)是D上的有界函数,其中m称为函数f(x)的下界,M称为函数f(x)的上界;特别地,若“=”成立,则m称为函数f(x)的下确界,M称为函数f(x)的上确界. (Ⅰ)判断
是否是有界函数?说明理由;
(Ⅱ)若函数f(x)=1+a2x+4x(x∈(﹣∞,0))是以﹣3为下界、3为上界的有界函数,求实数a的取值范围;
(Ⅲ)若函数
,T(a)是f(x)的上确界,求T(a)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,则a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场柜台销售某种产品,每件产品的成本为10元,并且每件产品需向该商场交a元(3≤a≤7)的管理费,预计当每件产品的售价为x元(20≤x≤25)时,一天的销售量为(x﹣30)2件. (Ⅰ)求该柜台一天的利润f(x)(元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该柜台一天的利润f(x)最大,并求出f(x)的最大值g(a).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
cos(2x﹣
).
(1)若sinθ=﹣
,θ∈(
,2π),求f(θ+
)的值;
(2)若x∈[
,
],求函数f(x)的单调减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知对任意平面向量
=(x,y),把
绕其起点沿逆时针方向旋转θ角得到的向量
=(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2
,1).把点B绕点A逆时针方向旋转
角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转
后得到的点的轨迹方程是曲线y=
,求原来曲线C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com