【题目】已知函数
,其中
(
为自然对数的底数).
(Ⅰ)讨论函数
的单调性,并写出相应的单调区间;
(Ⅱ)设
,若函数
对任意
都成立,求
的最大值.
【答案】(I)见解析 (II)
.
【解析】试题分析: (I)求出
,对
和
分别讨论单调性,求出单调区间; (II)先对参数
和
时分别讨论,利用特殊值检验不能恒成立,在
时,由函数
对任意
都成立,得
,即
,
,构造关于a的新函数,求导判断单调性求出最大值,即
的最大值.
试题解析:(I)因为
,
①当
时,
在
恒成立,函数
在
上单调递增;
②当
时,由
得
,
所以当
时
,此时
单调递减;
当
时
,此时
单调递增.
综上,当
时,函数
的单调递增区间为
;
当
时,函数
的单调递增区间为
;
单调递减区间为
.
(II) 由(I)知,当
时,函数
在R上单调递增且
时,
.
所以
不可能恒成立;
当
时,
;
当
时,由函数
对任意
都成立,得
.
因为
,
所以
.
所以
,
设
所以
,
由于
,令
,得
.
当
时,
,
单调递增;
当
)时,
,
单调递减.
所以
,即
,
时,
的最大值为
.
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是( ) ![]()
A.{t|
}
B.{t|
≤t≤2}
C.{t|2
}
D.{t|2
}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设离心率为
的椭圆
的左、右焦点为
, 点P是E上一点,
,
内切圆的半径为
.
(1)求E的方程;
(2)矩形ABCD的两顶点C、D在直线
上,A、B在椭圆E上,若矩形ABCD的周长为
, 求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x3+bx2+cx,其导函数y=f′(x)的图象(如图所示)经过点(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2个根,求m的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
成绩分组 | 频数 | 频率 |
(160,165] | 5 | 0.05 |
(165,170] | ① | 0.35 |
(170,175] | 30 | ② |
(175,180] | 20 | 0.20 |
(180,185] | 10 | 0.10 |
合计 | 100 | 1 |
(1)请先求出频率分布表中①、②位置相应的数据,再画出频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设Ox、Oy是平面内相交成45°角的两条数轴,
、
分别是x轴、y轴正方向同向的单位向量,若向量
=x
+y
,则把有序数对(x,y)叫做向量
在坐标系xOy中的坐标,在此坐标系下,假设
=(﹣2,2
),
=(2,0),
=(5,﹣3
),则下列命题不正确的是( ) ![]()
A.
=(1,0)
B.|
|=2 ![]()
C.
∥ ![]()
D.
⊥ ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是菱形,
,
平面
,
,
,
,
是
中点.
(I)求证:直线
平面
.
(II)求证:直线
平面
.
(III)在
上是否存在一点
,使得二面角
的大小为
,若存在,确定
的位置,若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实常数
和
,使得函数
和
对其定义域上的任意实数
分别满足:
和
,则称直线
为
和
的“隔离直线”.已知
,
为自然对数的底数).
(1)求
的极值;
(2)函数
和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com