【题目】已知椭圆
、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,平面上四个点
,
,
,
中有两个点在椭圆
上,另外两个点在抛物线
上.
(1)求
的标准方程;
(2)是否存在直线
满足以下条件:①过
的焦点
;②与
交于
两点,且以
为直径的圆经过原点
.若存在,求出直线
的方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知圆
,圆心为
,定点
,
为圆
上一点,线段
上一点
满足
,直线
上一点
,满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)
为坐标原点,
是以
为直径的圆,直线
与
相切,并与轨迹
交于不同的两点
.当
且满足
时,求
面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一装有水的直三棱柱ABC-A1B1C1容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面AA1B1B水平放置,如图所示,点D、E、F、G分别在棱CA、CB、C1B1、C1A1上,水面恰好过点D,E,F,C,且CD=2
![]()
(1)证明:DE∥AB;
(Ⅱ)若底面ABC水平放置时,求水面的高
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的左、右焦点分别为
,上顶点为A,过点A与
垂直的直线交
轴负半轴于点
,且
,若过
,
,
三点的圆恰好与直线
相切.过定点
的直线
与椭圆
交于
,
两点(点
在点
,
之间).
(Ⅰ)求椭圆
的方程;(Ⅱ)若实数
满足
,求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,
,且满足
.
(1)求点
的轨迹方程所代表的曲线
;
(2)若点
,
,
是曲线
上的动点,点
在直线
上,且满足
,
,当点
在
上运动时,求点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系xOy 中,曲线C的参数方程为
(
是参数,0≤
≤π),以O 为极点,以x 轴的正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线C 的极坐标方程;
(Ⅱ)直线l1,的极坐标方程是2psin(θ+
)+
=0,直线l2:θ =
与曲线C的交点为P,与直线l1的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
、
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
、
两点.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当四边形
面积取最大值时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=aln x+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数f(x)的解析式及单调区间;
(2)若函数g(x)=f(x)+m-ln 4在
上恰有两个零点,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com