【题目】已知圆
,圆心为
,定点
,
为圆
上一点,线段
上一点
满足
,直线
上一点
,满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)
为坐标原点,
是以
为直径的圆,直线
与
相切,并与轨迹
交于不同的两点
.当
且满足
时,求
面积
的取值范围.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】试题分析:(Ⅰ)分析题意可得点
满足的几何条件,根据椭圆的定义可得轨迹,从而可求得轨迹方程;(Ⅱ)先由直线
与
相切得到
,将直线方程与椭圆方程联立,并结合一元二次方程根与系数的关系可得
,由
且
,进一步得到k的范围,最后根据三角形面积公式并结合函数的单调性求
的取值范围。
试题解析:
(Ⅰ)∵![]()
∴
为线段
中点
∵![]()
∴
为线段
的中垂线
∴![]()
∵![]()
∴由椭圆的定义可知
的轨迹是以
为焦点,长轴长为
的椭圆,
设椭圆的标准方程为
,
则
,
,
∴
。
∴点
的轨迹
的方程为
。
(Ⅱ)∵圆
与直线
相切,
∴
,即
,
由
,消去
.
∵直线
与椭圆交于两个不同点,
∴
,
将
代入上式,可得
,
设
,
,
则
,
,
∴
,
∴![]()
∴
,
∵
,解得
.满足
。
又
,
设
,则
.
∴
,
∴![]()
故
面积
的取值范围为
。
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,
)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:
,点
在x轴的正半轴上,过点M的直线
与抛物线C相交于A,B两点,O为坐标原点.
![]()
(1)若
,且直线
的斜率为1,求以AB为直径的圆的方程;
(2)是否存在定点M,使得不论直线
绕点M如何转动,
恒为定值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
,动圆
经过点
且和直线
相切,记动圆的圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设曲线
上一点
的横坐标为
,过
的直线交
于一点
,交
轴于点
,过点
作
的垂线交
于另一点
,若
是
的切线,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,且
,设命题p:函数
在
上单调递减;命题q:函数
在
上为增函数,
(1)若“p且q”为真,求实数c的取值范围
(2)若“p且q”为假,“p或q”为真,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=
,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.
![]()
(1) 求直线PB与平面POC所成角的余弦值;
(2)线段
上是否存在一点
,使得二面角
的余弦值为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,平面上四个点
,
,
,
中有两个点在椭圆
上,另外两个点在抛物线
上.
(1)求
的标准方程;
(2)是否存在直线
满足以下条件:①过
的焦点
;②与
交于
两点,且以
为直径的圆经过原点
.若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com