【题目】已知函数
是定义在R上的偶函数,且当
时,
(
).
(1)当
时,求
的表达式:
(2)求
在区间
的最大值
的表达式;
(3)当
时,若关于x的方程
(a,
)恰有10个不同实数解,求a的取值范围.
【答案】(1)
;(2)
;(3)![]()
【解析】
(1)根据偶函数的特点,可知
,可得结果.
(2)采用分类讨论方法,
与
,去掉绝对值研究函数
在区间
上的单调性,可得结果.
(3)画出函数
图像,利用换元法
,得出
与
,可转化为
两个根为
,可得
,最后计算可得结果.
(1)令
,则![]()
由当
时,![]()
所以![]()
又函数
是定义在R上的偶函数,
即![]()
所以![]()
所以当
时,![]()
(2)当
时,![]()
如图
![]()
可知函数
的最大值在
或
处取得,
所以
,![]()
![]()
![]()
①若
,此时![]()
②若
,此时
;
当
时,
,对称轴为![]()
③若
,即
时,则
,
④若
,即
时,则![]()
综上,得![]()
(3)当
时,![]()
如图
![]()
令![]()
由
的图象可知,
当
时,方程
有两解;
当
时,方程
有四解;
当
时,方程
有六解;
当
时,方程
有三解;
当
时,方程
无解.
要使方程
(a,
)
恰有10个不同实数解,
则关于t的方程
的一个根为1,
另一个根
,设
,则有
![]()
则![]()
所以a的取值范围为
.
科目:高中数学 来源: 题型:
【题目】已知长度为
的线段
的两个端点
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
,且斜率不为零的直线
与曲线
交于两点
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数?若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,且椭圆上存在一点
,满足
.
(1)求椭圆
的标准方程;
(2)过椭圆
右焦点
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线E:
-
=1(a>0,b>0)的右顶点为A,O为坐标原点,M为OA的中点,若以AM为直径的圆与E的渐近线相切,则双曲线E的离心率等于( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
(
为参数),曲线
(
为参数).
(1)设
与
相交于
两点,求
;
(2)若把曲线
上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
的距离的最大时,点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.
![]()
(1)根据上述样本数据,将
列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?
(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为
,求随机变量
的期望和方差;
(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为
,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )
![]()
A. 各月的平均最低气温都在0℃以上
B. 七月的平均温差比一月的平均温差大
C. 三月和十一月的平均最高气温基本相同
D. 平均最高气温高于20℃的月份有5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com