【题目】某学校高三年级有
、
两个自习教室,甲、乙、丙
名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为________.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,右焦点为
,左顶点为A,右顶点B在直线
上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C上异于A,B的点,直线
交直线
于点
,当点
运动时,判断以
为直径的圆与直线PF的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用细钢管焊接而成的花坛围栏构件如图所示,它的外框是一个等腰梯形PQRS,内部是一段抛物线和一根横梁,抛物线的顶点与梯形上底中点是焊接点O,梯形的腰紧靠在抛物线上,两条腰的中点是梯形的腰、抛物线以及横梁的焊接点A,B,抛物线与梯形下底的两个焊接点为C,D,已知梯形的高是40厘米,C,D两点间的距离为40厘米.
![]()
(1)求横梁AB的长度;
(2)求梯形外框的用料长度;
(注:细钢管的粗细等因素忽略不计,结果精确到1厘米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
为直线
的倾斜角),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的直角坐标方程,并求
时直线
的普通方程;
(2)直线
和曲线
交于
、
两点,点
的直角坐标为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的首项
,对任意的
,都有
,数列
是公比不为
的等比数列.
(1)求实数
的值;
(2)设
数列
的前
项和为
,求所有正整数
的值,使得
恰好为数列
中的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在△
中,
,
分别为
,
的中点,
为
的中点,
,
.将△
沿
折起到△
的位置,使得平面
平面
,
为
的中点,如图2.
![]()
(1)求证:
平面
;
(2)求证:平面
平面
;
(3)线段
上是否存在点
,使得
平面
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级有男生
人,编号为
,
,…,
;女生
人,编号为
,
,…,
.为了解学生的学习状态,按编号采用系统抽样的方法从这
名学生中抽取
人进行问卷调查,第一组抽到的号码为
,现从这
名学生中随机抽取
人进行座谈,则这
人中既有男生又有女生的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com