【题目】已知P(3,
)是椭圆C:
1
上的点,Q是P关于x轴的对称点,椭圆C的离心率为
.
![]()
(1)求椭圆C的方程;
(2)A,B是椭圆上位于直线PQ两侧的动点.
①若直线AB的斜率为
,求四边形APBQ面积的最大值.
②当A、B在运动过程中满足∠APQ=∠BPQ时,问直线AB的斜率是否为定值,并说明理由.
【答案】(1)
;(2)①
;②是,理由见解析.
【解析】
(1)由已知列关于
,
,
的方程组求解可得
,
的值,则椭圆方程可求;
(2)①设出直线
的方程,与椭圆方程联立,求得
,利用配方法求最值;
②当
时,由
是
关于
轴的对称点,得
,
的斜率之和为0,设直线
的斜率为
,则
的斜率为
,求得直线
,
的方程,与椭圆方程联立求得
与
的值,代入直线的斜率公式可得直线
的斜率是定值.
解:(1)由题意知
,解得
.
椭圆
的方程为
;
(2)①设
,
,
,
,直线
的方程为
.
联立
,得
.
由
的范围可得
,由根与系数的关系得
,
.
![]()
.
是
关于
轴的对称点,
四边形
的面积
.
当
时,
;
②当
时,
是
关于
轴的对称点,
,
的斜率之和为0,
设直线
的斜率为
,则
的斜率为
,设直线
,
代入椭圆方程,可得
.
![]()
,将
换为
,可得
.
![]()
,
,
![]()
.
故
的斜率为定值
.
科目:高中数学 来源: 题型:
【题目】如图1,
,过动点
作
,垂足
在线段
上且异于点
,连接
,沿
将
折起,使
(如图2所示),
![]()
(1)当
的长为多少时,三棱锥
的体积最大;
(2)当三棱锥
的体积最大时,设点
分别为棱
的中点,试在棱
上确定一点
,使得
,并求
与平面
所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:(x+m)2+y2=4n2(m,n>0且m≠n),点N(m,0),P是圆M上的动点,线段PN的垂直平分线交直线PM于点Q,点Q的轨迹为曲线C.
(1)讨论曲线C的形状,并求其方程;
(2)若m=1,且△QMN面积的最大值为
.直线l过点N且不垂直于坐标轴,l与曲线C交于A,B,点B关于x轴的对称点为D.求证:直线AD过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了普及环保知识,增强环保意识,某大学从理工类专业的
班和文史类专业的
班各抽取
名同学参加环保知识测试,统计得到成绩与专业的列联表:( )
优秀 | 非优秀 | 总计 | |
| 14 | 6 | 20 |
| 7 | 13 | 20 |
总计 | 21 | 19 | 40 |
附:参考公式及数据:
(1)统计量:
,(
).
(2)独立性检验的临界值表:
| 0.050 | 0.010 |
| 3.841 | 6.635 |
则下列说法正确的是
A. 有
的把握认为环保知识测试成绩与专业有关
B. 有
的把握认为环保知识测试成绩与专业无关
C. 有
的把握认为环保知识测试成绩与专业有关
D. 有
的把握认为环保知识测试成绩与专业无关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的一个焦点
与抛物线
:
的焦点重合,且离心率为
.
(1)求椭圆
的标准方程;
(2)过焦点
的直线
与抛物线
交于
,
两点,与椭圆
交于
,
两点,满足
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,抛物线
与圆
的相交弦长为4.
(1)求抛物线
的标准方程;
(2)点
为抛物线
的焦点,
为抛物线
上两点,
,若
的面积为
,且直线
的斜率存在,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
(a>0,b>0)的右焦点为F(3,0),左、右顶点分别为M,N,点P是E在第一象限上的任意一点,且满足kPMkPN=8.
(1)求双曲线E的方程;
(2)若直线PN与双曲线E的渐近线在第四象限的交点为A,且△PAF的面积不小于3
,求直线PN的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
将圆
的圆周分为四等份,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于不同的两点
,且
的中点为
,线段
的垂直平分线为
,直线
与
轴交于点
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com