【题目】椭圆
将圆
的圆周分为四等份,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于不同的两点
,且
的中点为
,线段
的垂直平分线为
,直线
与
轴交于点
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知P(3,
)是椭圆C:
1
上的点,Q是P关于x轴的对称点,椭圆C的离心率为
.
![]()
(1)求椭圆C的方程;
(2)A,B是椭圆上位于直线PQ两侧的动点.
①若直线AB的斜率为
,求四边形APBQ面积的最大值.
②当A、B在运动过程中满足∠APQ=∠BPQ时,问直线AB的斜率是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双11”促销活动中,某商场为了吸引顾客,搞好促销活动,采用“双色球”定折扣的方式促销,即:在红、黄的两个纸箱中分别装有大小完全相同的红、黄球各5个,每种颜色的5个球上标有1,2,3,4,5等5个数字,顾客结账时,先分别从红、黄的两个纸箱中各取一球,按两个球的数字之和为折扣打折,如
,就按3折付款,并规定取球后不再增加商品.按此规定,顾客享有6折及以下折扣的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,已知
.
(1)令
,求数列
的通项公式;
(2)若数列
满足:
.
①求数列
的通项公式;
②是否存在正整数
,使得
成立?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
,(
为参数).以坐标原点为极点,
轴正半轴为极轴,建立极坐标系,直线
经过点
,且与极轴所成的角为
.
(1)求曲线
的普通方程及直线
的参数方程;
(2)设直线
与曲线
交于
两点,若
,求直线
的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在矩形ABCD中,AB=2,BC=1,E是CD的中点,将三角形ADE沿AE翻折到图②的位置,使得平面AED′⊥平面ABC.
![]()
(1)在线段BD'上确定点F,使得CF∥平面AED',并证明;
(2)求△AED'与△BCD'所在平面构成的锐二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高三年级100名学生的视力情况进行统计(如果两眼视力不同,取较低者统计),得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在
的概率为
.
![]()
(1)求a,b的值;
(2)若报考高校A专业的资格为:任何一眼裸眼视力不低于5.0,已知在
中有
的学生裸眼视力不低于5.0.现用分层抽样的方法从
和
中抽取4名同学,设这4人中有资格(仅考虑视力)考A专业的人数为随机变量ξ,求ξ的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求
在
处的切线方程;
(2)令
,已知函数
有两个极值点
,且
,
①求实数
的取值范围;
②若存在
,使不等式
对任意
(取值范围内的值)恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com