【题目】已知球
是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)
的外接球,
,
,点
在线段
上,且
,过点
作球
的截面,则所得截面圆面积的取值范围是( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】设定义在
上的函数
、
和
,满足
,且对任意实数
、
(
),恒有
成立.
⑴试写 出一组满足条件的具体的
和
,使
为增函数,
为减函数,但
为增函数.
⑵判断下列两个命题的真假,并说明理由.
命题1):若
为增函数,则
为增函数;
命题2):若
为增函数,则
为增函数.
⑶已知
,写出一组满足条件的具体的
和
,且
为非常值函数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx与g(x)=log4(a2x﹣
a),其中f(x)是偶函数.
(1)求实数k的值;
(2)求函数g(x)的定义域;
(3)若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥
中,
为底面正方形的中心,侧棱
与底面
所成的角的正切值为
.
![]()
(1)求侧面
与底面
所成的二面角的大小;
(2)若
是
的中点,求异面直线
与
所成角的正切值;
(3)问在棱
上是否存在一点
,使
⊥侧面
,若存在,试确定点
的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
中心在原点,焦点在坐标轴上,直线
与椭圆
在第一象限内的交点是
,点
在
轴上的射影恰好是椭圆
的右焦点
,椭圆
另一个焦点是
,且
.
(1)求椭圆
的方程;
(2)直线
过点
,且与椭圆
交于
两点,求
的内切圆面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
表示不超过
的最大整数,下列关于
说法正确的有:______.
①
的值域为[-1,1]
②
为奇函数
③
为周期函数,且最小正周期T=4
④
在[0,2)上为单调增函数
⑤
与
的图像有且仅有两个公共点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com