精英家教网 > 高中数学 > 题目详情

【题目】如图,为等腰梯形,为矩形,平面平面.

1)证明:平面

2)若到平面的距离为,求几何体的体积.

【答案】1)证明见解析;(212.

【解析】

1)设,过作垂线交于,根据平行线成比例定理,结合勾股定理的逆定理、面面垂直的性质定理、线面垂直的性质定理和判定定理进行证明即可;

2)连接,过作垂线交于,由(1)结合面面垂直的判定定理和性质定理可以证明出即为到平面的距离,最后利用体积公式进行求解即可.

1)如图,设,过作垂线交于

在等腰梯形中,,所以

由勾股定理得:

,∴,∴.

,平面平面,平面平面

平面,∴.

,∴平面.

2)连接,由(1)知平面平面,过作垂线交于

平面,∴即为到平面的距离,

,∴,解得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

l)设,讨论函数的单调性;

2)若函数的图象在上恒在轴的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且成等比数列.

1)求椭圆的方程;

2)斜率不为的动直线过点且与椭圆相交于两点,记,线段上的点满足,试求为坐标原点)面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有l000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为追光族,计划在明年及明年以后才购买5G手机的员工称为观望者调查结果发现抽取的这100名员工中属于追光族的女性员工和男性员工各有20.

(Ⅰ)完成下列列联表,并判断是否有的把握认为该公司员工属于追光族性别有关;

属于追光族

属于观望者

合计

女性员工

男性员工

合计

100

(Ⅱ)已知被抽取的这l00名员工中有6名是人事部的员工,这6名中有3名属于追光族现从这6名中随机抽取3名,求抽取到的3名中恰有1名属于追光族的概率.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019新型冠状病译(2019-nCoV)于2020112日被世界卫生组织命名.冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.某医院对病患及家属是否带口罩进行了调查,统计人数得到如下列联表:

戴口罩

未戴口罩

总计

未感染

30

10

40

感染

4

6

10

总计

34

16

50

1)根据上表,判断是否有95%的把握认为未感染与戴口罩有关;

2)在上述感染者中,用分层抽样的方法抽取5人,再在这5人中随机抽取2人,求这2人都未戴口罩的概率.

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点PMN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OCMN所成的角为

(1)用分别表示矩形的面积,并确定的取值范围;

(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点均在椭圆上,,点与点关于原点对称,的最大值为

1)求椭圆的标准方程;

2)若,求外接圆的半径的值.

查看答案和解析>>

同步练习册答案