【题目】已知函数
是定义在
上的奇函数,当
时,
,给出下列命题:
①当
时,
②函数
有3个零点
③
的解集为
④
,都有![]()
其中正确命题的个数是( )
A. 4B. 3C. 2D. 1
【答案】A
【解析】
对于①:根据奇函数的性质即可求解;
对于②:先求出当
时,函数的零点,利用奇函数的性质,就可以求出当
时,函数的零点,由于函数
是定义在
上的奇函数,所以有
。
对于③:分类讨论,当
时,求出
的解集;当
时,求出
的解集。
对于④:利用导数,求出函数
的值域,就可以判断是否正确。
对于①:当
时,有
,由奇函数定义可知:
,所以
本命题正确;
对于②:当
时,
,解得
,即
,根据奇函数的性质可知
,又因为定义域是
,所以
,因此函数
有3个零点,本命题正确;
对于③:当
时,
,即
,解得
,
;
当
时,通过①的分析,可知
,当
时,即
,解得
,
,本命题正确;
对于④:当
时,
,
,当
时,
,函数单调递增;当
,函数单调递减,
的极大值为
,
当
时,
,根据③可知,当
时,
,当
时,
,
所以当
时,
,由于
是奇函数
时,
,
而
,所以当
时,
,即
恒成立,本命题正确。
综上所述,有4个命题是正确的,因此本题选A。
科目:高中数学 来源: 题型:
【题目】再直角坐标系中,定义两点
,
间的“直角距离”为
,现有下列命题:
①若
,
是
轴上两点,则![]()
②已知
,
,则
为定值
③原点
到直线
上任一点
的直角距离
的最小值为![]()
④设
且
,
,若点
是在过
与
的直线上,且点
到点
与
的“直角距离”之和等于
,那么满足条件的点
只有
个.
其中的真命题是____________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问5分,(2)小问7分)
如图,椭圆
的左、右焦点分别为
过
的直线交椭圆于
两点,且![]()
![]()
(1)若
,求椭圆的标准方程
(2)若
求椭圆的离心率![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b是异面直线,给出下列结论:
①一定存在平面
,使直线
平面
,直线
平面
;
②一定存在平面
,使直线
平面
,直线
平面
;
③一定存在无数个平面
,使直线b与平面
交于一个定点,且直线
平面
.
则所有正确结论的序号为( )
A.②③B.①③C.①②D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点为F,短轴的两个端点分别为A、B,且
,
为等边三角形.
![]()
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线
与椭圆C交于另一点J,若
,试求以线段
为直径的圆的方程;
(3)已知
是过点A的两条互相垂直的直线,直线
与圆
相交于
两点,直线
与椭圆C交于另一点R;求
面积取最大值时,直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
(
为参数,
),以平面直角坐标系的原点为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)若直线
被圆截得的弦长为
时,求
的值.
(2)直线
的参数方程为
(
为参数),若
,垂足为
,求
点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆
的方程为:
,
为圆上任意一点,过
作
轴的垂线,垂足为
,点
在
上,且
.
(1)求点
的轨迹
的方程;
(2)过点
的直线与曲线
交于
、
两点,点
的坐标为
,
的面积为
,求
的最大值,及直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
与
都为等边三角形,且侧面
与底面
互相垂直,
为
的中点,点
在线段
上,且
,
为棱
上一点.
![]()
(1)试确定点
的位置,使得
平面
;
(2)在(1)的条件下,求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com