【题目】再直角坐标系中,定义两点
,
间的“直角距离”为
,现有下列命题:
①若
,
是
轴上两点,则![]()
②已知
,
,则
为定值
③原点
到直线
上任一点
的直角距离
的最小值为![]()
④设
且
,
,若点
是在过
与
的直线上,且点
到点
与
的“直角距离”之和等于
,那么满足条件的点
只有
个.
其中的真命题是____________.(写出所有真命题的序号)
科目:高中数学 来源: 题型:
【题目】给出以下三个命题:
①若
,则
;
②在
中,若
,则
;
③在一元二次方程
中,若
,则方程有实数根.
其中原命题、逆命题、否命题、逆否命题均为真命题的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费
为此,政府调查了100户居民的月平均用电量
单位:度
,以
,
,
,
,
,
分组的频率分布直方图如图所示.
根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量
的值;
用频率估计概率,利用
的结果,假设该市每户居民月平均用电量X服从正态分布![]()
估计该市居民月平均用电量介于
度之间的概率;
利用
的结论,从该市所有居民中随机抽取3户,记月平均用电量介于
度之间的户数为
,求
的分布列及数学期望
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商家在某一天统计前5名顾客扫微信红包所得金额分别为5.9元,5.7元,4.7元,3.3元,2.1元,商家从这5名顾客中随机抽取3人赠送礼品.
(Ⅰ)求获得礼品的3人中恰好有2人的红包超过5元的概率;
(Ⅱ)商家统计一周内每天使用微信支付的人数
与每天的净利润
(单位:元),得到如下表:
| 12 | 16 | 22 | 25 | 26 | 29 | 30 |
| 60 | 100 | 210 | 240 | 150 | 270 | 330 |
根据表中数据用最小二乘法求
与
的回归方程
(
,
的计算结果精确到小数点后第二位)并估计使用微信支付的人数增加到36人时,商家当天的净利润为多少(计算结果精确到小数点后第二位)?
参考数据及公式:
①
,
;
;![]()
②回归方程:
(其中
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥
中,
,
,
,点
在
上,且
.
![]()
(1)证明:
面
;
(2)在棱
上是否存在一点
,使三棱锥
是正三棱锥?证明你的结论.
(3)求以
为棱,
与
为面的二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线
(其中
)的焦点
的直线交抛物线于
两点,且
两点的纵坐标之积为
.
(1)求抛物线
的方程;
(2)当
时,求
的值;
(3)对于
轴上给定的点
(其中
),若过点
和
两点的直线交抛物线
的准线
点,求证:直线
与
轴交于一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在
上的奇函数,当
时,
,给出下列命题:
①当
时,
②函数
有3个零点
③
的解集为
④
,都有![]()
其中正确命题的个数是( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com