【题目】
在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:
,经过点
,倾斜角为
的直线l与曲线C交于A,B两点
(I)求曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)求
的值。
科目:高中数学 来源: 题型:
【题目】已知
是定义在
上的函数,记
,
的最大值为
.若存在
,满足![]()
![]()
,则称一次函数
是
的“逼近函数”,此时的
称为
在
上的“逼近确界”.
(1)验证:
是![]()
的“逼近函数”;
(2)已知![]()
![]()
![]()
.若
是
的“逼近函数”,求
的值;
(3)已知![]()
的逼近确界为
,求证:对任意常数
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆
的方程;
(2)若
上存在两点
,椭圆
上存在两个
点满足:
三点共线,
三点共线,且
,求四边形
的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域是一切实数的函数
,其图像是连续不断的,且存在常数
(
)使得
对任意实数
都成立,则称
是一个“
—伴随函数”.有下列关于“
—伴随函数”的结论:
①
是常数函数中唯一一个“
—伴随函数”;
②“
—伴随函数”至少有一个零点;
③
是一个“
—伴随函数”;
其中正确结论的个数是 ( )
A.1个;B.2个;C.3个;D.0个;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的左、右焦点分别为![]()
![]()
,过点
且斜率为
的直线和以椭圆的右顶点为圆心,短半轴为半径的圆相切.
(1)求椭圆的方程;
(2)椭圆的左、右顶点分为A,B,过右焦点
的直线l交椭圆于P,Q两点,求四边形APBQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,
为其前
项的和,满足
.
(1)求数列
的通项公式;
(2)设数列
的前
项和为
,数列
的前
项和为
,求证:当
时
;
(3)(理)已知当
,且
时有
,其中
,求满足
的所有
的值.
(4)(文)若函数
的定义域为
,并且
,求证
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,直线
与椭圆
在第一象限内的交点是
,且
轴,
.
(1)求椭圆
的方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
,
两点,与椭圆
相交于
,
两点,且
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com