精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

1)求函数的单调区间;

2)当时,对任意的,存在,使得成立,试确定实数m的取值范围.

【答案】1)当时,的单调递增区间是,无递减区间;当时,的单调递增区间是,递减区间是;(2.

【解析】

1)求得的导函数,对分成两种情况,讨论函数的单调区间.

2)将问题转化为,利用导数求得的最小值,结合(1)对分成三种情况进行分类讨论,求得的最小值.从而确定的取值范围.

1)由,得.时,,所以的单调递增区间是,没有减区间.时,由,解得;由,解得,所以的单调递增区间是,递减区间是.综上所述,当时,的单调递增区间是,无递减区间;当时,的单调递增区间是,递减区间是.

2)当时,对任意,存在,使得成立,只需成立.

,得.,则.所以当时,,当时,.所以上递减,在上递增,且,所以.所以,即上递增,所以上递增,所以.

由(1)知,当时,上递增,在上递减,

①当时,上递减,

②当时,上递增,在上递减,,由

时,,此时

时,,此时

③当时,上递增,

所以当时,

,得

时,

,得

.综上,所求实数m的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点的个数;

2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于AB两点

I)求曲线C的直角坐标方程和直线l的参数方程;

)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马底面是长方形,且有一条侧棱与底面垂直的四棱锥和一个鳖臑四个面均为直角三角形的四面体在如图所示的堑堵中,已知,若阳马的外接球的表面积等于,则鳖臑的所有棱中,最长的棱的棱长为(

A.5B.C.D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}{bn}满足:a1=an+bn=1bn+1=.

1)求a2a3

2)证数列为等差数列,并求数列{an}{bn}的通项公式;

3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSnbn恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:极坐标与参数方程

已知在平面直角坐标系xOyO为坐标原点曲线C (α为参数)在以平面直角坐标系的原点为极点x轴的正半轴为极轴取相同单位长度的极坐标系直线lρ.

()求曲线C的普通方程和直线l的直角坐标方程;

()曲线C上恰好存在三个不同的点到直线l的距离相等分别求出这三个点的极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面分别是的中点.

(1)求三棱锥的体积;

(2)若异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时,,当时,,若直线与函数的图象恰有7个不同的公共点,则实数的取值范围为_________.

查看答案和解析>>

同步练习册答案