精英家教网 > 高中数学 > 题目详情

【题目】在直角梯形ABCD中(如图1),,点ECD上,且,将沿AE折起,使得平面平面ABCE(如图2),GAE中点.

(Ⅰ)求四棱锥的体积;

(Ⅱ)在线段BD上是否存在点P,使得平面ADE?若存在,求的值;若不存在,请说明理由.

【答案】(Ⅰ)(Ⅱ)存在,

【解析】

(Ⅰ)根据平面与平面垂直的性质定理得到平面ABCE再根据椎体的体积公式计算可得结果;

(Ⅱ)过点CAB于点F,过点FDB于点P,连接PC可证得平面平面ADE再根据平面与平面平行的性质可得平面ADE最后根据平面几何知识可求得比值.

(Ⅰ)证明:因为GAE中点,,所以

因为平面平面ABCE,平面平面

平面ADE,所以平面ABCE

在直角三角形ADE中,易求

所以四棱锥的体积

(Ⅱ)在BD上存在点P,使得平面ADE

过点CAB于点F,过点FDB于点P,连接PC

如图所示:

因为平面ADE平面ADE,所以平面ADE

同理平面ADE

又因为,所以平面平面ADE

因为平面CFP,所以平面ADE

所以在BD上存在点P,使得平面ADE

因为四边形AECF为平行四边形.

所以,即

.

所以在BD上存在点P,使得平面ADE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一个不透明的盒子中装有4个大小、形状、手感完全相同的小球,分别标有数字1234.现每次有放回地从中任意取出一个小球,直到标有偶数的球都取到过就停止.小明用随机模拟的方法估计恰好在第3次停止摸球的概率,利用计算机软件产生随机数,每1组中有3个数字,分别表示每次摸球的结果,经随机模拟产生了以下18组随机数:

131 432 123 233 234 122 332 141 312 241 122 214 431 241 141 433 223 442

由此可以估计恰好在第3次停止摸球的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点、以轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,若直线与曲线交于两点.

1)求线段的中点的直角坐标;

2)设点是曲线上任意一点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc分别为内角ABC的对边,若同时满足以下四个条件中的三个:①,②,③,④.

1)条件①②能否同时满足,请说明理由;

2)以上四个条件,请在满足三角形有解的所有组合中任选一组,并求出对应的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020项的实数数列,中的每一项都不为零,中任意连续11的乘积是定值.

①存在满足条件的数列,使得其中恰有3651

②不存在满足条件的数列,使得其中恰有5501.

命题的真假情况为(

A.①和②都是真命题B.①是真命题,②是假命题

C.②是真命题,①是假命题D.①和②都是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众志成城,抗击疫情,一方有难,八方支援,在此次抗击疫情过程中,各省市都派出援鄂医疗队. 假设汕头市选派名主任医生,名护士,组成三个医疗小组分配到湖北甲、乙、丙三地进行医疗支援,每个小组包括名主任医生和名护士,则不同的分配方案有(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,左焦点到直线的距离为10,圆.

1)求椭圆的方程;

2)若是椭圆上任意一点,为圆的任一直径,求的取值范围;

3)是否存在以椭圆上点为圆心的圆,使得过圆上任意一点作圆的切线,切点为,都满足?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(Ⅰ)求函数处的切线;

(Ⅱ)若函数处有最大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于函数有下述四个结论:

①函数在其定义域上为增函数;

②对于任意的,都有成立;

有且仅有两个零点;

④若在点处的切线也是的切线,则必是零点.

其中所有正确的结论序号是(

A.①②③B.①②C.②③④D.②③

查看答案和解析>>

同步练习册答案