【题目】已知a,b,c分别为
内角A,B,C的对边,若
同时满足以下四个条件中的三个:①
,②
,③
,④
.
(1)条件①②能否同时满足,请说明理由;
(2)以上四个条件,请在满足三角形有解的所有组合中任选一组,并求出对应
的面积.
【答案】(1)不能同时满足①② (2)若
满足①③④时,则
的面积为
,若
满足②③④时,则
的面积为
.
【解析】
(1)由①根据余弦定理得到
,进一步得到
,由②结合正弦定理得到
,从而得到
不成立,由此可得答案;
(2)由(1)知,
满足①③④或②③④,若
满足①③④,根据余弦定理求出
,再根据三角形的面积公式可得面积;若
满足②③④,根据正弦定理得到
,由勾股定理求出
,根据直角三角形的面积公式可得面积.
(1)由①
得:![]()
由余弦定理
.
由②
及正弦定理,得:
,
即
,因为
,
∴
,
,
∴
,∵
,∴
.
因为
且
,
所以
.所以
,矛盾.
所以
不能同时满足①②.
(2)由(1)知,
满足①③④或②③④
若
满足①③④
因为![]()
所以
,即
,
解得
或
(舍去).
∴
的面积![]()
另:若
满足②③④
,即
,则
,所以
,
所以
,
所以
的面积
.
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展“新型冠状病毒防疫安全公益课”在线学习,在此之后组织了“新型冠状病毒防疫安全知识竞赛”在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1,2,3,4名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用a,b,c,d表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记X=|a﹣1|+|b﹣2|+|c﹣3|+|d﹣4|.
(1)求该业主获得礼品的概率;
(2)求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直三棱柱ABC﹣A1B1C1,E,F分别是棱CC1,AB的中点.
![]()
(1)证明:CF∥平面AEB1.
(2)若AC=BC=AA1=4,∠ACB=90°,求三棱锥B1﹣ECF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦距为2,且过点
.
![]()
(1)求椭圆
的标准方程;
(2)若
为坐标原点,
为直线
上的一动点,过点
作直线
与椭圆相切于点
,若
的面积
为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角梯形ABCD中(如图1),
,
,
,
,
,点E在CD上,且
,将
沿AE折起,使得平面
平面ABCE(如图2),G为AE中点.
![]()
(Ⅰ)求四棱锥
的体积;
(Ⅱ)在线段BD上是否存在点P,使得
平面ADE?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com