【题目】若二次函数g(x)=ax2+bx+c(a≠0)满足g(x+1)=2x+g(x),且g(0)=1.
(1)求g(x)的解析式;
(2)若在区间[-1,1]上,不等式g(x)-t>2x恒成立,求实数t的取值范围.
科目:高中数学 来源: 题型:
【题目】东西向的铁路上有两个道口
、
,铁路两侧的公路分布如图,
位于
的南偏西
,且位于
的南偏东
方向,
位于
的正北方向,
,
处一辆救护车欲通过道口前往
处的医院送病人,发现北偏东
方向的
处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要
分钟,救护车和火车的速度均为
.
![]()
(1)判断救护车通过道口
是否会受火车影响,并说明理由;
(2)为了尽快将病人送到医院,救护车应选择
、
中的哪个道口?通过计算说明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某湿地公园的鸟瞰图是一个直角梯形,其中:
,
,
,
长1千米,
长
千米,公园内有一个形状是扇形的天然湖泊
,扇形
以
长为半径,弧
为湖岸,其余部分为滩地,B,D点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段
线段
弧
,其中Q在线段
上(异于线段端点),
与弧
相切于P点(异于弧端点]根据市场行情
,
段的建造费用是每千米10万元,湖岸段弧
的建造费用是每千米
万元(步行道的宽度不计),设
为
弧度观光步行道的建造费用为
万元.
![]()
(1)求步行道的建造费用
关于
的函数关系式,并求其走义域;
(2)当
为何值时,步行道的建造费用最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)的左、右焦点分别为
,
且椭圆上存在一点P,满足.
,![]()
(1)求椭圆C的标准方程;
(2)已知A,B分别是椭圆C的左、右顶点,过
的直线交椭圆C于M,N两点,记直线
,
的交点为T,是否存在一条定直线l,使点T恒在直线l上?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
,点F是PB的中点,点E在边BC上移动.
![]()
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有
;
(3)当
为何值时,
与平面
所成角的大小为45°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|﹣a.
(1)当a=1时,解不等式f(x)>x+1;
(2)若存在实数x,使得f(x)
f(x+1),求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com