(本大题满分14分)
已知△
的两个顶点
的坐标分别是
,
,且
所在直线的斜率之积等于
.
(Ⅰ)求顶点
的轨迹
的方程,并判断轨迹
为何种圆锥曲线;
(Ⅱ)当
时,过点
的直线
交曲线
于
两点,设点
关于
轴的对称点为
(
不重合).求证直线
与
轴的交点为定点,并求出该定点的坐标.
(1) (1) 当
时 轨迹
表示焦点在
轴上的椭圆,且除去
两点;
当
时 轨迹
表示以
为圆心半径是1的圆,且除去
两点;
当
时 轨迹
表示焦点在
轴上的椭圆,且除去
两点;
当
时 轨迹
表示焦点在
轴上的双曲线,且除去
两点
(2) 直线
过定点
解析试题分析:(Ⅰ)由题知:
化简得:
……………………………2分
当
时 轨迹
表示焦点在
轴上的椭圆,且除去
两点;
当
时 轨迹
表示以
为圆心半径是1的圆,且除去
两点;
当
时 轨迹
表示焦点在
轴上的椭圆,且除去
两点;
当
时 轨迹
表示焦点在
轴上的双曲线,且除去
两点;
……………………………6分
(Ⅱ)设![]()
依题直线
的斜率存在且不为零,则可设
:
,
代入
整理得![]()
,
, ………………………………9分
又因为
不重合,则![]()
![]()
的方程为
令
,
得![]()
故直线
过定点
. ……………………………13分
解二:设![]()
![]()
依题直线
的斜率存在且不为零,可设
:![]()
代入
整理得:![]()
,
, ……………………………9分![]()
的方程为
令
,
得![]()
直线
过定点
……………………………13分
考点:考查了圆锥曲线方程,以及直线与圆锥曲线的位置关系
点评:解决含参数的曲线方程的问题,主要是关注我们方程的特点来分类讨论得到,同时能结合设而不求的思想求解坐标,进而求解直线方程,属于中档题。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,设点
、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
最小值为
.![]()
(1)求椭圆
的方程;
(2)若动直线
均与椭圆
相切,且
,试探究在
轴上是否存在定点
,点
到
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知抛物线
的焦点为
.过点
的直线交抛物线于
,
两点,直线
,
分别与抛物线交于点
,
.![]()
(Ⅰ)求
的值;
(Ⅱ)记直线
的斜率为
,直线
的斜率为
.证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆的中心在原点,焦点在
轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线
在
轴上的截距为
,
交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与
轴始终围成一个等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆C:
=1(a>b>0)的两个焦点分别为F1(﹣c,0),F2(c,0),M是椭圆短轴的一个端点,且满足![]()
=0,点N( 0,3 )到椭圆上的点的最远距离为5![]()
(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,
;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
设椭圆![]()
(
)的两个焦点是
和
(
),且椭圆
与圆
有公共点.
(1)求
的取值范围;
(2)若椭圆上的点到焦点的最短距离为
,求椭圆的方程;
(3)对(2)中的椭圆
,直线![]()
(
)与
交于不同的两点
、
,若线段
的垂直平分线恒过点
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分) 已知
在抛物线
上,
的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
:
的焦点为
,
、
是抛物线
上异于坐标原点
的不同两点,抛物线
在点
、
处的切线分别为
、
,且
,
与
相交于点
. ![]()
(1) 求点
的纵坐标;
(2) 证明:
、
、
三点共线;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com