精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是(

A.为真命题,则均为假命题;

B.命题,则的逆否命题为真命题;

C.等比数列的前项和为,若的否命题为真命题;

D.平面向量的夹角为钝角的充要条件是

【答案】C

【解析】

根据逻辑连接词的性质判断A;根据逆否命题与原命题同真假判断B;根据逆否命题同真同假判断C;再根据数量积的公式判断D即可.

A,为真命题,则为假命题,故,至少有一个假命题,故A错误.

B, 因为,故命题,则为假命题,故其逆否命题也为假命题.故B错误.

C, 等比数列的前项和为,若的逆命题为等比数列的前项和为,若”.又因为当成立.而原命题的逆命题与否命题互为逆否命题,同真同假,故C正确.

D, , 也可能反向,此时夹角为.故D错误.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

(1)若上的增函数,求的取值范围;

(2)若函数有两个极值点,判断函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市疾控中心流感监测结果显示,自月起,该市流感活动一度出现上升趋势,尤其是月以来呈现快速增长态势,截止目前流感病毒活动度仍处于较高水平,为了预防感冒快速扩散,某校医务室采取积极方式,对感染者进行短暂隔离直到康复假设某班级已知位同学中有位同学被感染,需要通过化验血液来确定感染的同学,血液化验结果呈阳性即为感染,呈阴性即未被感染.下面是两种化验方法: 方案甲:逐个化验,直到能确定感染同学为止;

方案乙:先任取个同学,将它们的血液混在一起化验若结果呈阳性则表明感染同学为这位中的位,后再逐个化验,直到能确定感染同学为止;若结果呈阴性则在另外位同学中逐个检测;

(1)求依方案甲所需化验次数等于方案乙所需化验次数的概率;

(2)表示依方案甲所需化验次数,表示依方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑那种化验方案最佳.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的单调区间;

(2)当时,关于的不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3.由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为.

视觉

视觉记忆能力

偏低

中等

偏高

超常

听觉记忆

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

1)试确定的值;

2)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的分布列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定直线my=2x16,抛物线Cy2=axa>0.

1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;

2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面

(1)求证:平面

(2)在棱上是否存在点,使得平面?若存在,确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:函数有两个零点,q.若为真,为假,则实数m的取值范围为

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的导函数,且,则下列说法正确的是___________.

②曲线处的切线斜率最小;

③函数存在极大值和极小值;

在区间上至少有一个零点.

查看答案和解析>>

同步练习册答案