【题目】已知
是定义域为
的奇函数,且
.
(1)求
的解析式;
(2)证明
在区间
上是增函数;
(3)求不等式
的解集.
【答案】(1)
;(2)见解析;(3)
.
【解析】试题分析:(1)由
是定义域为
的奇函数可得
,再由
,解得
,可求函数
的解析式;(2)任取
,将
分解因式,可证明
,从而可得结论;(3)根据
在区间
上是增函数,结合函数的定义域列不等式组求解即可.
试题解析:(1)由题意可得
,∴
,
∴
,解得
,∴
.
(2)设
,则
,
∵
,∴
,
,
,
∴
,即
,∴
在
上是增函数.
(3)由
得
,即
,
由已知及(2)可得
,解得
,
∴原不等式的解集为
.
【方法点晴】本题主要考查抽象函数的定义域、函数的单调性及利用单调性函数解不等式,属于难题. 利用单调性函数解不等式应注意以下三点:(1)一定注意函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成
后再利用单调性和定义域列不等式组..
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)设a=2,函数f(x)的定义域为[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-
(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市春节期间7家超市的广告费支出
(万元)和销售额
(万元)数据如下:
超市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合
与
的关系,求
关于
的线性回归方程;
(2)用二次函数回归模型拟合
与
的关系,可得回归方程:
,
经计算二次函数回归模型和线性回归模型的
分别约为
和
,请用
说明选择哪个回归模型更合适,并用此模型预测
超市广告费支出为3万元时的销售额.
参数数据及公式:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sinωx·cosωx-cos2ωx(ω>0)的最小正周期为
.
(1)求ω的值;
(2)在△ABC中,sinB,sinA,sinC成等比数列,求此时f(A)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy上取两个定点
再取两个动点
,
,且
.
(Ⅰ)求直线
与
交点M的轨迹C的方程;
(Ⅱ)过
的直线与轨迹C交于P,Q,过P作
轴且与轨迹C交于另一点N,F为轨迹C的右焦点,若
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com