设F为抛物线E: ![]()
的焦点,A、B、C为该抛物线上三点,已知
且
.
(1)求抛物线方程;
(2)设动直线l与抛物线E相切于点P,与直线
相交于点Q。证明以PQ为直径的圆恒过y轴上某定点。
科目:高中数学 来源: 题型:解答题
已知抛物线
与双曲线
有公共焦点
,点
是曲线
在第一象限的交点,且
.
(1)求双曲线
的方程;
(2)以双曲线
的另一焦点
为圆心的圆
与直线
相切,圆
:
.过点
作互相垂直且分别与圆
、圆
相交的直线
和
,设
被圆
截得的弦长为
,
被圆
截得的弦长为
,问:
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点
是椭圆
(
)的左焦点,点
,
分别是椭圆的左顶点和上顶点,椭圆的离心率为
,点
在
轴上,且
,过点
作斜率为
的直线
与由三点
,
,
确定的圆
相交于
,
两点,满足
.![]()
(1)若
的面积为
,求椭圆的方程;
(2)直线
的斜率是否为定值?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:设
分别为曲线
和
上的点,把
两点距离的最小值称为曲线
到
的距离.
(1)求曲线
到直线
的距离;
(2)已知曲线
到直线
的距离为
,求实数
的值;
(3)求圆
到曲线
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆
的中心在原点
,焦点在
轴上,短轴长为
,离心率为
.
(I)求椭圆
的方程;
(II)
为椭圆
上满足
的面积为
的任意两点,
为线段
的中点,射线
交椭圆
与点
,设
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
,
分别是椭圆
的左、右焦点
,
关于直线
的对称点是圆
的一条直径的两个端点。
(Ⅰ)求圆
的方程;
(Ⅱ)设过点
的直线
被椭圆
和圆
所截得的弦长分别为
,
。当
最大时,求直线
的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的右焦点
在圆
上,直线
交椭圆于
、
两点.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 若OM⊥ON(
为坐标原点),求
的值;
(Ⅲ)
设点
关于
轴的对称点为
(
与
不重合),且直线![]()
与
轴交于点
,试问
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,点
是抛物线上的一点,且其纵坐标为4,
.
(1)求抛物线的方程;
(2)设点
是抛物线上的两点,
的角平分线与
轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线
过点
,求弦
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com